Capacity-Delay-Error-Boundaries: A Composable Model of Sources and Systems

Nico Becker

Institute of Communications Technology
Leibniz Universität Hannover

March 09, 2015
Information vs. queueing theory

Information theory focuses on averages and asymptotic limits of

▶ the data rate of a source,
▶ the capacity of a channel.

It does, however, not consider delays that are due to their variability.

Unlike **queueing theory** that considers

▶ the burstiness of sources and statistical multiplexing,
▶ delays and loss that can be traded for capacity,

but assumes statistics of sources.
Outline

Basic Concepts

Additivity of the Capacity-Delay-Error Model

Composite systems

Conclusions
Network Calculus [Chang ’00]

\[A(t) \otimes S(t) := \inf_{\tau \in [0,t]} \{ A(\tau) + S(\tau, t) \} \leq D(t) \]
Statistical network calculus [CLB ’06]
Statistical network calculus [CLB ’06]

\[\text{data} \]
Statistical network calculus [CLB ’06]
Statistical network calculus [CLB ’06]
Statistical network calculus [CLB ’06]
Statistical network calculus [LFL ’14]
Performance bounds

\[\begin{align*}
E_A(t) & \quad B(t) \\
W(t) & \quad E_S(t)
\end{align*} \]
For a constant rate server with capacity c

$$E_A(t)$$

$E_A(t) := \sup_{t \geq 0} \{ E_A(t) - ct \}$

$$d_A = \frac{L_A(c)}{c}.$$
For a constant rate server with capacity c

$$\mathcal{L}_A(c) := \sup_{t \geq 0} \{ E_A(t) - ct \}$$
For a constant rate server with capacity c

\[\mathcal{L}_A(c) := \sup_{t \geq 0} \{ E_A(t) - ct \} \]

\[d_A = \frac{\mathcal{L}_A(c)}{c} . \]
Source

\[d_A [s] \]

\[c [Mb/s] \]

\[qp = 28 \ 25 \ 22 \ 19 \]

© Nico Becker | IKT LUH | 9/14
For a constant arrival rate c

$$\mathcal{L}_S(c) := \sup_{t \geq 0} \{ct - E_S(t)\}$$

$$d_S = \frac{\mathcal{L}_S(c)}{c}$$
System [ALB ’13]
Additivity of the Capacity-Delay-Error Model

\[\mathcal{L}_A(c) := \sup_{t \geq 0} \{ E_A(t) - ct \}, \]
\[\mathcal{L}_S(c) := \sup_{t \geq 0} \{ ct - E_S(t) \}. \]
Additivity of the Capacity-Delay-Error Model

\[\mathcal{L}_A(c) := \sup_{t \geq 0} \{ E_A(t) - ct \}, \]
\[\mathcal{L}_S(c) := \sup_{t \geq 0} \{ ct - E_S(t) \}. \]
Additivity of the Capacity-Delay-Error Model

\[L_A(c) := \sup_{t \geq 0} \{E_A(t) - ct\}, \]

\[L_S(c) := \sup_{t \geq 0} \{ct - E_S(t)\}. \]

\[d = d_A + d_S \]
Additivity of the Capacity-Delay-Error Model

\[\mathcal{L}_A(c) := \sup_{t \geq 0} \{ E_A(t) - ct \}, \]
\[\mathcal{L}_S(c) := \sup_{t \geq 0} \{ ct - E_S(t) \}. \]

\[d = d_A + d_S \]

i.e., sources and channels can be analyzed as if in isolation.
Additivitiy of the Capacity-Delay-Error Model

\[L_A(c) := \sup_{t \geq 0} \{ E_A(t) - ct \}, \]
\[L_S(c) := \sup_{t \geq 0} \{ ct - E_S(t) \}. \]

\[d = d_A + d_S \]

i.e., sources and channels can be analyzed as if in isolation.
Composite systems

\[c \text{ [Mb/s]} \]

\[d_A, d_S \text{ [s]} \]

\[qp = 28 \]

6 dB, 9, 12, 15

\[2, 6, 10, 14, 18 \]

\[0.05, 0.1, 0.15, 0.2, 0.25, 0.3 \]
Feasible Operating Points

\begin{figure}
\centering
\includegraphics[width=\textwidth]{feasible_operating_points.png}
\caption{Feasible Operating Points}
\end{figure}
Conclusions

Legendre transforms of $E_A(t)$ and $E_S(t)$

- additive backlog and delay bounds
- permits analyzing sources and channels separately
- have the interpretation of a capacity-delay-error-tradeoff
- model includes
 - memoryless sources, Markov sources,
 - Huffman, Shannon, Lempel-Ziv coders,
 - discrete memoryless channels
 - block coding, e.g., BCH codes

- can be a step towards a unified theory ...