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Fig. 1. Fork-join model.

Abstract—Models of parallel processing systems typically as-
sume that one has l servers and jobs are split into an equal
number of k = l tasks. This seemingly simple approximation has
surprisingly large consequences for the resulting stability and
performance bounds. In reality, best practices for modern map-
reduce systems indicate that a job’s partitioning factor should
be much larger than the number of servers available, with some
researchers going to far as to advocate for a “tiny tasks” regime,
where jobs are split into over 10,000 tasks. In this paper we use
recent advances in stochastic network calculus to fundamentally
understand the effects of task granularity on parallel systems’
scaling, stability, and performance. For the split-merge model,
we show that when one allows for tiny tasks, the stability region
is actually much better than had previously been concluded. For
the single-queue fork-join model, we show that sojourn times
quickly approach the optimal case when l “big tasks” are sub-
divided into k � l “tiny tasks”. Our results are validated using
extensive simulations, and the applicability of the models used is
validated by experiments on an Apache Spark cluster.

I. INTRODUCTION

Two well-known models of parallel computation are the
fork-join and split-merge models. Fig. 1 shows a schematic
of the fork-join model. Jobs enter the system and are divided
into k tasks (fork) that are assigned one by one to l = k
servers. Once all k tasks of a job are serviced, the job
leaves the system (join). The difficulty in analyzing fork-join
systems arises from the synchronization constraint of the join
operation, and an exact solution is only known for the M|M|1
case with k = l = 2 [1], [2]. For broader classes of systems,
a variety of approximation techniques have been used [2]–
[10]. More recently several researchers have used stochastic
network calculus to derive performance bounds [11]–[14].

The split-merge model, also referred to as “blocking fork-
join” in [12], has an additional synchronization constraint. The
system is blocked until the current job finishes service, hence
a new job starts service only when all servers are idle. A
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Fig. 2. Split-merge model.

schematic of the split-merge model is shown in Fig. 2. The
analysis of the split-merge model turns out to be much simpler
because it behaves like a single-server system with service
times given by the service time of the largest task of each
job [3], [15], [16]. The problem with the conventional (k = l)
split-merge model is that it becomes unstable for utilizations
well below one, and it becomes unstable more quickly as the
degree of parallelism increases, as shown in Fig. 3. This has
led some researchers to discount the model as impractical [12].

A third model arises in practice. When jobs are submitted
by a multi-threaded driver program, map-reduce engines such
as Apache Spark and Hadoop MapReduce do not typically
behave like a traditional fork-join system, but rather as a
single-queue fork-join system, where all tasks are held in a
single FIFO queue and assigned to servers as they become
available [17]. Compared to the fork-join model, where tasks
are bound to particular servers and a large task can block tasks
of subsequent jobs, in the single-queue fork-join model small
jobs can overtake jobs with large straggler tasks. Mean sojourn
times for such systems are derived in [18], and bounds on the
sojourn time are derived using network calculus in [14].

Fig. 4 shows how job sojourn time scales with the number
of servers for these three models given exponential inter-arrival
and task service times. The plot shows performance bounds
derived using network calculus in [12] and [14], simulation
results, and experimental results from an Apache Spark cluster.
For comparison the plot includes the equivalent sojourn time
statistics for the ideal job partition. This is achieved when the
jobs are partitioned into k = l equally sized tasks. Both fork-
join systems show a logarithmic increase in sojourn time as the
degree of parallelism increases because of the synchronization
constraint [10], [12]. The performance of the split-merge
system appears catastrophic by comparison.

Apache Spark is a popular parallel processing engine that
implements a map-reduce API [19], [20]. Fig. 4 shows that de-
pending on the constraints put on the system, a Spark program
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Fig. 3. Stability regions of the fork-join and split-merge models with l parallel
servers for Exp(λ) inter-arrival times and Exp(µ) task service times, µ = 1.
The utilization is defined as % = λ/µ. Throughout this paper we generally
plot analytical results with thick lines and simulation results with thin lines.
We see that the fork-join system is stable up to a utilization of one regardless
of the parallelism, but that the split-merge system quickly becomes unstable
as the number of servers increases.

may exhibit the scaling behavior of split-merge, fork-join, or
single-queue fork-join. When jobs are submitted from a single
thread, as can easily be the case when jobs are submitted
from an external script or interactive notebook, or when a
busy programmer does not want to write multi-threaded code,
the system scales like split-merge. When jobs are submitted
from a multi-threaded driver program, the scheduler behaves
like single-queue fork-join. If the system is configured with
an extremely large spark.locality.wait value, then the
performance will tend to scale like a fork-join system.

It is no surprise that map-reduce practitioners have devised
methods to increase the performance of their systems, even
in the split-merge case. The simplest of these is to partition
jobs into a much larger number of tasks than there are servers,
k > l. A common guideline is that the number of tasks should
be about three times the number of servers, i.e., k ≈ 3l [21],
or optimized through trial and error [22]. Some researchers
have proposed even more extreme task granularity, coining
the term “tiny tasks” [23]. So far, however, no analytical
results studying how task granularity affects parallel system
performance have been reported.

In this paper we will derive the stability region of the split-
merge model with tiny tasks and quantify the improvement
in the stability region compared to the equivalent “big tasks”
model. In the limit, the stability region approaches one. Then
we derive statistical performance bounds for both the split-
merge and fork-join models with tiny tasks, and show how
their performance improves over the equivalent big tasks
model. In the limit the performance approaches that of the
ideal job partition. Our results are validated by extensive
simulations.

The remainder of this paper is structured as follows. We
provide the required background on stochastic network cal-
culus and discuss the state of the art in parallel systems in
Sec. II. In Sec. III we prove how tiny tasks resolve the stability
issues of the split-merge model. In Sec. IV we consider the
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Fig. 4. Sojourn times of the conventional split-merge, fork-join, and single-
queue fork-join models for varying degrees of parallelism. Job inter-arrival
times are Exp(λ = 0.2) and task service times are Exp(µ = 1). The
10−3 quantile of sojourn time is plotted. In addition to analytical bounds
and simulation results, this shows experimental results from a Spark cluster
marked with squares. We also include results for a parallel processing system
with an ideal job partition, where a job is partitioned into l equally sized
tasks. In case of the ideal partition all three models perform identically.

fork-join model with tiny tasks and show that with increasing
task tinyfication the performance of both the fork-join and the
split-merge model approach that of the ideal job partition. We
provide brief conclusions in Sec. V.

II. STATE OF THE ART

Here we present the analytical tools and notation needed to
derive and understand our results. We build on the approach
of [12], [14], making use of a max-plus version [24]–[27] of
the stochastic network calculus [25], [28]–[33].

A. Notation and Background

Let A(n) for n ≥ 1 denote the arrival time of job n where
A(n) ≥ A(m) ≥ 0 for n ≥ m ≥ 1. By convention, we
use A(0) = 0. The inter-arrival time between job n and
job m for n ≥ m ≥ 1 is A(m,n) = A(n) − A(m). We
denote the departure time, D(n), using the same conventions.
Servers are modeled using a definition of max-plus server
with service process S(m,n) that is adapted from [25, Def.
6.3.1].

Definition 1 (Max-plus server). A system with arrivals A(n)
and departures D(n) is an S(m,n) server under the max-plus
algebra if it holds for all n ≥ 1 that

D(n) ≤ max
m∈[1,n]

{A(m) + S(m,n)}.

Applying this definition to the sojourn time, T (n) =
D(n)−A(n) for n ≥ 1, we obtain that

T (n) ≤ max
m∈[1,n]

{S(m,n)−A(m,n)}. (1)

In the case of first-come first-served service, the waiting time
W (n) = [D(n−1)−A(n)]+, where [X]+ = max{0, X}, can
be derived in the same way.

For single-server systems the service process specifies the
cumulative service time of jobs m to n and we have the



relationship S(m,n) =
∑n
ν=m ∆(ν) where ∆(ν) is the

service time of job ν. When we move to the multi-server
setting, the definition of S(m,n) becomes more subtle.

The derivations of waiting time and sojourn time bounds
in [12], [14] make use of moment generating functions
(MGFs) of the arrival process and the service process. The
MGF of a random variable X is defined as MX(θ) = E[eθX ]
where θ is a free parameter. The MGF of a sum of independent
random variables X and Y is the product of their individual
MGFs, i.e., MX+Y (θ) = MX(θ)MY (θ), and scaling X by
a constant c is equivalent to a corresponding scaling of the
parameter θ, i.e., McX(θ) = MX(cθ). A common class of
MGF models are (σ, ρ)-envelopes defined in [25, Def. 7.2.1].
These are adapted to max-plus servers in [14, Def. 2].

Definition 2 ((σ, ρ)-Arrival and Service Envelopes). An ar-
rival process, A(m,n), is (σA, ρA)-lower constrained if for
all n ≥ m ≥ 1 and θ > 0 it holds that

E
[
e−θA(m,n)

]
≤ e−θ(ρA(−θ)(n−m)−σA(−θ)).

A service process, S(m,n), is (σS , ρS)-upper constrained if
for all n ≥ m ≥ 1 and θ > 0 it holds that

E
[
eθS(m,n)

]
≤ eθ(ρS(θ)(n−m+1)+σS(θ)).

(σ, ρ)-envelopes are models of G|G|1 queues, and a va-
riety of stochastic processes satisfy the definition including
Markov and periodic processes [25], [34]. In this work we
restrict ourselves to GI|GI|1 queues with independent and
identically distributed (iid) increments. For the arrival process
A(m,n) =

∑n−1
ν=mA(ν, ν+1) this means we assume iid inter-

arrival times A(ν, ν+ 1), and for the service process S(m,n)
the individual service times of each job ∆(n) are iid. In the
iid case we have σA(−θ) = σS(θ) = 0.

As an example, consider the classical M|M|1 queue. The ar-
rival process has iid inter-arrival times A(n, n+ 1) ∼ Exp(λ),
and MGF E[e−θA(n,n+1)] = λ/(λ+ θ) for n ≥ 1 and θ > 0.
It follows that

ρA(−θ) = −1

θ
ln

(
λ

λ+ θ

)
, (2)

for θ > 0. Similarly, for iid service times ∆(n) ∼ Exp(µ) we
have E[eθ∆(n)] = µ/(µ− θ) for n ≥ 1 and θ ∈ (0, µ) so that

ρS(θ) =
1

θ
ln

(
µ

µ− θ

)
, (3)

for θ ∈ (0, µ). Parameter ρA(−θ) decreases with θ > 0 from
the mean inter-arrival time to the minimal inter-arrival time
(possibly zero) and ρS(θ) increases with θ > 0 from the mean
service time to the maximal service time (possibly infinity).

Performance bounds are obtained using a basic theorem of
the stochastic network calculus.

Theorem 1 (Statistical waiting and sojourn time bounds).
Given an S(m,n) server with iid inter-arrival times with
envelope rate ρA(−θ) and iid service times with envelope

rate ρS(θ). For any θ > 0 that satisfies ρS(θ) ≤ ρA(−θ),
the waiting time for all n ≥ 1 is bounded by

P[W (n) > τ ] ≤ e−θτ ,

and the sojourn time by

P[T (n) > τ ] ≤ eθρS(θ)e−θτ .

Th. 1 is taken from [14, Th. 1] and can be found in a similar
way, e.g., in [12], [13], [31], [35]–[37]. The waiting time
bound also matches a classical result in [38]. Corresponding
results are also available for the backlog and for the case of
non-iid arrival and service processes. The free parameter θ
can be optimized. For the example of the M|M|1 queue the
maximal speed of the tail decay θ follows from ρS(θ) ≤ ρA(θ)
as θ = µ−λ so that P[T (n) > τ ] ≤ µ

λe
−(µ−λ)τ [12, Eq. 14].

B. State of the Art in Parallel Systems

Here we will summarize prior results for split-merge, fork-
join, single-queue fork-join, and ideal partitioning parallel
systems. These are derived for the case where the number
of tasks per job k equals the number of servers l. In the
parallel setting we need to define additional terms and notation
to distinguish between the service processes for jobs and tasks.

Given k tasks per job, let Qi(n) denote the task service
time of task i ∈ [1, k] of job n ≥ 1. The workload of a job
L(n) =

∑k
i=1Qi(n) is defined to be the total of the service

required by all of its tasks. The job service time ∆(n) is the
total time a job spends in service. That is, the time between
when its first task begins service and when all of its tasks
finish service. Note that for the parallel models, L(n) and
∆(n) are not necessarily equal and S(m,n) may not generally
be defined in increments of ∆(n).

1) Split-merge: In the split-merge model all k = l tasks
in a job start simultaneously. Therefore the service time of
a job is determined by that of its maximal task ∆(n) =
maxi∈[1,l]{Qi(ν)}. Hence, the model can be expressed as a
max-plus server with service process

S(m,n) =

n∑
ν=m

max
i∈[1,l]

{Qi(ν)}, (4)

for n ≥ m ≥ 1 [12].
For the split-merge model with iid exponential task service

times, the authors of [12] use the identity

max
i∈[1,l]

{Qi(ν)} =d

l∑
i=1

Qi(ν)

i
, (5)

where =d denotes equality in distribution. It follows that for
iid task service times Qi(n) ∼ Exp(µ), the mean job service
time is E[∆(ν)] =

∑l
i=1 1/(iµ). For iid inter-arrival times

A(n, n+ 1) ∼ Exp(λ), i.e., with mean inter-arrival time 1/λ,
the split-merge system is stable if and only if [12, Eq. 21]

1

λ
>

1

µ

l∑
i=1

1

i
.



Then % = λ/µ is the utilization. The term
∑l
i=1

1
i is the lth

harmonic number. These have the logarithmic asymptotic limit
γ + ln l, where γ ≈ 0.577 is the Euler constant. Hence, the
maximum stable utilization decays proportionally to 1/ ln l as
seen in Fig. 3.

For iid Qi(n) ∼ Exp(µ) it also follows that the service
process of the split-merge model (4) has service envelope

ρS(θ) =
1

θ

l∑
i=1

ln

(
iµ

iµ− θ

)
, (6)

for θ ∈ (0, µ). The sojourn time bound depicted in Fig. 4 is
obtained by substitution of (6) into Th. 1.

2) Fork-join: Using the one-to-one mapping of k = l tasks
to l servers, the service process of the fork-join model is

S(m,n) = max
i∈[1,l]

{
n∑

ν=m

Qi(ν)

}
, (7)

for n ≥ m ≥ 1 [12]. This says that S(m,n) is determined by
the maximal sequence of tasks that are assigned to a server.
Clearly, for a given set of task service times Qi(n), the service
process S(m,n) of the fork-join model (7) will be less than
or equal to that of the split-merge model (4). The sojourn time
can be obtained from (1) by substitution of (7), Qi(m,n) =∑n
ν=mQi(ν), and reordering of the maxima to give

T (n) ≤ max
i∈[1,l]

{
max
m∈[1,n]

{Qi(m,n)−A(m,n)}
}
.

Then Ti(n) = maxm∈[1,n]{Qi(m,n) − A(m,n)} are the
individual task sojourn times at server i ∈ [1, l]. For each
server i ∈ [1, l] Th. 1 can be used to derive P[Ti(n) > τ ] and
applying the union bound, [12], [14] gives us P[T (n) > τ ] ≤∑l
i=1 P[Ti(n) > τ ]. The same steps can be used to derive

a waiting time bound. For the homogeneous case it follows
from Th. 1 that

P[T (n) > τ ] ≤ leθρQ(θ)e−θτ ,

for any θ > 0 satisfying ρQ(θ) ≤ ρA(−θ). For the case of
iid exponential arrivals and task service times, we can use
ρA(−θ) from (2) and substitute ρS(θ) from (3) for ρQ(θ) to
obtain the fork-join sojourn time bound plotted in Fig. 4.

Since ρQ(θ) and ρA(−θ) converge towards the mean task
service time and the mean inter-arrival time, respectively, as
θ → 0, the condition ρQ(θ) ≤ ρA(−θ) in Th. 1 implies that
the model is stable up to a utilization of one, as seen in Fig. 3.

3) Single-queue fork-join: The service process of the
single-queue fork-join model is more involved. The corre-
sponding results in Fig. 4 are obtained from [14, Th. 4]. The
single-queue fork-join model is also a special case (for k = l)
of Th. 2 in this paper.

4) Ideal partition: If jobs are composed of l iid exponential
tasks with parameter µ, then the jobs’ total workload has
distribution L(n) ∼ Erlang(l, µ). If jobs with this workload
distribution were instead divided into l equally-sized tasks,
then the tasks would have an Erlang(l, lµ) distribution, so that

ρQ(θ) =
l

θ
ln

(
lµ

lµ− θ

)
, (8)
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Fig. 5. Split-merge model with tiny tasks.

for θ ∈ (0, lµ). Since the tasks of each job are equisized, all
tasks of each job start and finish in unison. Hence, the system
functions identically to a single server. The sojourn time bound
depicted in Fig. 4 follows by substitution of (8) into Th. 1.

III. STABILIZING THE SPLIT-MERGE SYSTEM

In this section, we extend the split-merge model to cases
with high task granularity, and show how tiny tasks extend its
stability region and improve its sojourn time. In this model
there are l servers and jobs are partitioned into k ≥ l tasks,
where k may be orders of magnitude larger than l. We define
κ = k/l as the factor of tinyfication. The least granular case,
where κ = 1 and l = k, is the conventional split-merge model.
We will refer to the tasks in this case as “big tasks”. When
κ > 1 we refer to them as “tiny tasks”.

A schematic of the split-merge tiny tasks model is shown
in Fig. 5. Jobs are stored in a job queue, and if there is no
job in service, the head-of-line job is partitioned into k tasks
(split) which are then stored in the task queue. Since all servers
are idle at the start of a job, the first l tasks start service
immediately. Whenever a server finishes a task, it fetches the
head-of-line task from the task queue. When all k tasks have
finished service, the job leaves the system (merge) and the
next job, if any, is partitioned and starts service.

When κ is an integer, we can directly compare the perfor-
mance and stability of the big and tiny task systems. Concep-
tually we like to think of tiny tasks as being a refinement of
the big tasks, but analytically it works best if we start with
k = κl tiny tasks and aggregate them into l big tasks. If we
have tiny task service times Qtinyi , then the corresponding
big task service times would be Qbigj =

∑jκ
i=(j−1)κ+1Q

tiny
i .

As this is just a re-grouping of the tasks, the job’s workload
distribution L(n) is the same in both cases, and we can directly
compare the effects of refining the granularity of the task
partition. One distribution where this works well is when
Qtinyi ∼ Exp(µ). Then Qbigi ∼ Erlang(κ, µ), and the job
workload has distribution L(n) ∼ Erlang(κl, µ) [39].

Lemma 1 (Tiny tasks split-merge model). The split-merge
model with l servers and k ≥ l iid exponential tiny tasks with
parameter µ is a max-plus server. Its service process has iid
increments with envelope rate ρS(θ) = ρX(θ) + (k− l)ρZ(θ),
where

ρX(θ) =
1

θ

l∑
i=1

ln

(
iµ

iµ− θ

)
,



for θ ∈ (0, µ), and

ρZ(θ) =
1

θ
ln

(
lµ

lµ− θ

)
,

for θ ∈ (0, lµ). The expected job service time is

E[∆(n)] =
1

µ

(
k

l
+

l∑
i=2

1

i

)
.

We note that for the special case k = l, Lem.1 recovers the
envelope rate (6) and stability condition of the conventional
split-merge model. Sojourn time and waiting time bounds
follow by substitution of Lem. 1 into Th. 1.

Proof. First, we show that the tiny tasks split-merge model is
a max-plus server. Let Vi(n) be the time task i ∈ [1, k] of job
n ≥ 1 starts service. Since the first l tasks of a job start at the
same time, we have for i ∈ [1, l] that

Vi(n) = max{A(n), D(n− 1)}. (9)

For i ∈ [l + 1, k] we have

Vi(n) = Vi−1(n) + Zi−1(n), (10)

where Zi−1(n) is the time from the start of task i− 1 of job
n until the next server becomes available.

We can express the departure time D(n) of job n relative
to the start time of its last task,

D(n) = Vk(n) +X(n), (11)

where
X(n) = max

i∈[1,l]
{Yi(n)} (12)

and Yi(n) for i ∈ [1, l] are the residual service times of the
tasks, including task k, that are in service when task k starts
service at Vk(n). By repeated substitution of (10) into (11), it
follows that

D(n) = Vl(n) +

[
k−1∑
i=l

Zi(n)

]
+X(n).

With (9) this becomes

D(n) = max{A(n), D(n− 1)}+ ∆(n), (13)

where we write the service time of job n as

∆(n) =

[
k−1∑
i=l

Zi(n)

]
+X(n). (14)

By recursive insertion of (13) we obtain

D(n) = max
m∈[1,n]

{
A(m) +

n∑
ν=m

∆(ν)

}
,

i.e., the tiny tasks split-merge model is a max-plus server with
service process S(m,n) =

∑n
ν=m ∆(ν) and iid ∆(ν).

Next, we consider the distribution of X(n) and Zi(n). Due
to the memorylessness of the iid exponential task service
times, the residual service times Yi(n) are also iid exponential

with the same parameter µ. Regarding Zi(n), note that when
any task i ∈ [l, k − 1] of job n starts service all servers
are busy, so that the time until the next server becomes idle
is the minimum of the residual service times of the l tasks
that are in service. Thus Zi(n) is the minimum of l iid
exponential random variables with parameter µ, and therefore
Zi(n) ∼ Exp(lµ).

To derive the MGF of (14), we apply (5) to (12), i.e.,
X(n) = maxi∈[1,l]{Yi(n)} =d

∑l
i=1 Yi(n)/i which has MGF

M[X(n)](θ) =

l∏
i=1

M

[
Yi(n)

i

]
(θ) =

l∏
i=1

iµ

iµ− θ
, (15)

for θ ∈ (0, µ). Also, we have

M

[
k−1∑
i=l

Zi(n)

]
(θ) = M[Zi(n)]k−l =

(
lµ

lµ− θ

)k−l
, (16)

for θ ∈ (0, lµ). The MGF of (14) follows as the product of (15)
and (16). Taking the logarithm and dividing by θ gives ρS(θ).

Finally, the expected value E[∆(n)] can then be derived by
substituting (12) into (14) and using the identity (5). With
E[Zi(n)] = 1/(lµ), and E[Yi(n)/i] = 1/(iµ) this gives us

E[∆(n)] =
k − l
lµ

+
1

µ

l∑
i=1

1

i
.

Some reordering of the terms completes the proof.

A. Stability region of the tiny tasks split-merge model
The tiny tasks split-merge model is stable as long as

the expected inter-arrival time E[A(n, n + 1)] is larger than
the expected job service time E[∆(n)]. For iid inter-arrival
times A(n, n + 1) ∼ Exp(λ), the condition λE[∆(n)] < 1
implies stability. Since the expected total workload of a job
is E[L(n)] =

∑k
i=1 E[Qi(n)] = kE[Qi(n)], the mean service

provided to each job by each of the l servers will be κE[Qi(n)].
The utilization of each server is then % = λκE[Qi(n)]. Since
λ < 1/E[∆(n)] for stability, the stability region, i.e., the
maximum stable utilization for the tiny tasks model, is

% <
κE[Qi(n)]

E[∆(n)]
=

1

1 + 1
κ

∑l
i=2

1
i

, (tiny tasks) (17)

where we inserted E[∆(n)] from Lem. 1 and E[Qi(n)] = 1/µ
for Qi(n) ∼ Exp(µ) tiny tasks.

For comparison, consider the equivalent big tasks split-
merge model where the number of tasks k equals the number
of servers l and Qi(n) ∼ Erlang(κ, µ). The tiny tasks model
above is a direct refinement of this model. From (4) the
service process of the big tasks model is determined by the
maximal task, ∆(n) = maxi∈[1,l]{Qi(n)}. Since ∆(n) is non-
negative, we can derive the expected value by integration of
the complementary cumulative distribution function (CCDF)
as

E[∆(n)] =

∫ ∞
0

1− P[∆(n) ≤ x]dx

=

∫ ∞
0

1− (P[Qi(n) ≤ x])ldx,

(18)
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Fig. 6. Comparison of the split-merge model with tiny tasks vs. big tasks for varying number of servers, l, and Exp(λ) arrival process. Big tasks jobs have
k = l Erlang(κ, µ) tasks. Tiny tasks jobs have k = κl Exp(µ) tasks, and are therefore a direct refinement of the corresponding big tasks jobs. In all plots
κ = µ = 20 so the utilization is determined by the arrival rate % = κλ/µ = λ. We see that using tiny tasks decreases the mean idle time (a) and increases
the max stable utilization (b). The sojourn time statistics in (c) are computed for violation probability ε = 10−6.

where we used that P[maxi∈[1,l]{Qi(n)} ≤ x] = P[Q1(n) ≤
x ∩Q2(n) ≤ x ∩ · · · ∩Ql(n) ≤ x] = (P[Qi(n) ≤ x])l for iid
random variables Qi(n). Finally, we insert the Erlang-κ CDF

P[Qi(n) ≤ x] = 1− e−µx
κ−1∑
i=0

(µx)i

i!
(19)

and solve (18) numerically. Again, λE[∆(n)] < 1 implies
stability, and with % = λE[Qi(n)], where E[Qi(n)] = κ/µ is
the expected service time of the big tasks, the stability region
for the big tasks model follows as

% <
E[Qi(n)]

E[∆(n)]
=

κ

µE[∆(n)]
(big tasks) (20)

where E[∆(n)] is given by (18).
The stability region of the split-merge model with both

big tasks and tiny tasks for κ = 20 is shown in Fig. 6(b).
The model with tiny tasks shows a clear improvement of the
stability region.

1) Idle time: The differences in the stability region can be
better understood by studying the idling of servers towards the
end of a job. First we consider the idle times under the tiny
tasks model with k iid Exp(µ) tasks. Let Vk(n) denote the
start of service of task k of job n. At this time l tasks are in
service, and whenever a server finishes its task it idles until
the job departs. The residual service times of these l tasks,
Yi(n) for i ∈ [1, l], are iid Exp(µ). We define the idle time of
server i on job n, Ii(n), to be the time between when server
i finishes its processing for job n, and when job n departs.
Note that all servers have the same idle time distribution, so
we will simply write I(n). The expected idle time for the tiny
tasks model is then

E[I(n)] = E

[
max
i∈[1,l]

{Yi(n)}
]
− 1

µ
=

1

µ

l∑
i=2

1

i
, (21)

where we used (5). Note that this depends only on the number
of servers l, not on the number of tasks per job k.

We note that by the linearity of the expectation, we can
express the expected time a job spends in service E[∆(n)] in

terms of the expected service time of the κ = k/l tiny tasks
that are assigned on average to each server plus the expected
idle time, i.e., E[∆(n)] = κE[Qi(n)] + E[I(n)]. This can also
be verified by insertion of E[Qi(n)] = 1/µ and (21). The
result matches E[∆(n)] in Lem. 1. Further, we can rewrite the
stability region (17) by substitution of E[∆(n)] = κE[Qi(n)]+
E[I(n)] as

% <
1

1 + µl
k E[I(n)]

. (tiny tasks) (22)

In the big tasks model with l Erlang-κ tasks, all l tasks
start service at the same time, so the expected idle time is the
difference between the expected service time of the maximal
task E[∆(n)] given by (18) and the expected service time of
any task E[Qi(n)] = κ/µ. I.e., E[I(n)] = E[∆(n)]−E[Qi(n)].
Substitution into (20) matches (22) for the case k = l.

The expected idle times that correspond to the stability
regions in Fig. 6(b) are shown in Fig. 6(a). For the parameters
κ = 20 and µ = 20, we have E[Qbigi (n)] = κE[Qtinyi (n)] = 1
so (22) simplifies to % < 1/(1 + E[I(n)]). For example, for
l = 100 servers the mean idle time for the tiny tasks system
is 0.21, giving a maximal stable utilization of 0.83. In the
equivalent big tasks system, the mean idle time is 0.65, giving
a maximal stable utilization of 0.60.

2) Scaling with l: The mean idle time of the tiny tasks
model (21) is proportional to the lth harmonic number. Hence,
the expected idle time grows logarithmically with the number
of servers l, as shown in Fig. 6(a). It determines the reciprocal
decrease of the stability region (22) we observe in Fig. 6(b).

3) Scaling with κ, k: We study the effects of increasing
the degree of tinyfication, κ, from two different perspectives.
First, in Fig. 7(a) we increase κ and hence k with a fixed mean
task service time of 1/µ, for µ = 1, l = 50. In the case of
tiny tasks, idling is restricted to the last l tasks of each job.
The mean idle time is given by (21) and does not change with
k. Since the mean job size increases with k, however, the
relative impact of the idle time diminishes and the stability
region (22) improves. In case of big tasks, idling can occur
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Fig. 7. Comparison of the split-merge model with tiny tasks vs. big tasks and varying tinyfication parameter κ, for l = 50 servers and Exp(λ) arrival process.
Big tasks jobs are composed of l Erlang(κ, µ) tasks. Tiny tasks jobs are composed of k = κl Exp(µ) tasks. In 7(a) we hold µ = 1 constant. In 7(b) we set
µ = κ which holds the utilization constant. The maximum stable utilization for different values of κ is plotted in 7(c).

during the entire job. The mean idle time is computed from
E[I(n)] = E[∆(n)]− E[Qi(n)] which increases with κ.

Second, in Fig. 7(b) we increase κ, k, and µ proportionally,
which holds the mean job workload constant E[L(n)] = k/µ.
The decrease in mean idle time for the big tasks model is
due to a reduction in the variability of the task sizes. While
the mean size of a big task E[Qbigi (n)] = κ/µ stays constant,
Var[Qbigi (n)] = κ/µ2 decreases. In case of tiny tasks, the
mean size of the tasks decreases as their number increases,
resulting in a significantly larger reduction of the idle times. In
terms of equation (21), the mean idle time decreases because
µ increases as the tasks get smaller.

The corresponding stability regions are shown in Fig. 7(c).
The maximum stable utilization is completely determined by
a given κ and l, so both idle time plots correspond to the same
stability regions.

B. Sojourn time bounds

Fig. 6(c) compares sojourn time bounds of the big tasks
and tiny tasks models for equivalent parameters. In the case
of tiny tasks, the sojourn time bound is derived by substitution
of parameter ρS from Lem. 1 into Th. 1. In case of big tasks,
we first have to derive the envelope rate ρS(θ) of the service
process S(m,n) defined in (4) for iid tasks with Qi(n) ∼
Erlang(κ, µ). We derive the MGF of ∆(n) by integration of
the CCDF as

E[eθ∆(n)] =

∫ ∞
0

1− P[eθ∆(n) ≤ x]dx.

Since for θ > 0 it holds that eθ∆(n) ≥ 1 we have

E[eθ∆(n)] = 1 +

∫ ∞
1

1− P

[
∆(n) ≤ ln(x)

θ

]
dx.

By definition of ∆(n) = maxi∈[1,l]{Qi(n)} it follows that
P[∆(n) ≤ x] = (P[Qi(n) ≤ x])l so that

E[eθ∆(n)] = 1 +

∫ ∞
1

1−
(
P

[
Qi(n) ≤ ln(x)

θ

])l
dx.

We insert the Erlang-κ CDF (19) and solve the integral numer-
ically. The envelope rate follows as ρS(θ) = ln(E[eθ∆(n)])/θ
and the sojourn time bound is derived by use of Th. 1.

The sojourn time bounds in Fig. 6(c) are shown for iid inter-
arrival times A(n, n+1) ∼ Exp(λ). Three different λ are used,
corresponding to utilizations of 0.5, 0.6, and 0.7. The use of
tiny tasks improves the sojourn time bounds significantly. The
improvement is larger under higher utilizations, where the big
tasks split-merge model becomes unstable for even relatively
small numbers of servers l.

IV. APPROACHING THE IDEAL PARTITION

We consider a single-queue fork-join model with tiny tasks.
The model is similar to the split-merge model with tiny
tasks depicted in Fig. 5, with one difference: there is no
synchronization constraint at the start of a job. I.e., a new job
can start service as soon as a server becomes idle and there are
no unserviced tasks from the previous job. As a consequence,
servers will not idle towards the end of a job if there are other
jobs waiting. Furthermore, jobs can overtake each other and
finish service out of sequence. We study a model where the
jobs are forced to depart in sequence, i.e., D(n) ≤ D(n+ 1)
for n ≥ 1. That is, jobs that finish service must wait in a
queue until their predecessors have departed.

Using tiny tasks only makes sense in the context of a single-
queue model. In the standard fork-join model, where tasks are
bound to specific servers on arrival, tiny tasks would make no
difference. Therefore, throughout this section we will refer to
the single-queue model simply as fork-join with tiny tasks.

Theorem 2 (Tiny tasks fork-join model). Given a fork-join
model with l servers and k ≥ l iid exponential tiny tasks with
parameter µ and iid inter-arrival times with envelope rate
ρA(−θ). For any θ ∈ (0, µ) that satisfies kρZ(θ) ≤ ρA(−θ),
the waiting time of task i ∈ [1, k] of job n ≥ 1 is bounded by

P [Wi(n) ≥ τ ] ≤ eθ(i−1)ρZ(θ)e−θτ ,

and the sojourn time of job n ≥ 1 by

P [T (n) ≥ τ ] ≤ eθ((k−1)ρZ(θ)+ρX)e−θτ .
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Fig. 8. Comparison of the sojourn time bounds of the single-queue fork-join and split-merge models with l = 50 servers and k tiny tasks. As a reference,
the sojourn time bounds of a system with ideal partition, where a job is partitioned into l equisized tasks, is shown. Jobs have exponential inter-arrival times
with parameter λ = 0.5 and are composed of k exponential tiny tasks with parameter µ = k. The bounds are exceeded at most with ε = 10−6.

The parameters ρX(θ) and ρZ(θ) are given in Lem. 1.

As a special case for k = l = 1, Th. 2 recovers the single
server case Th. 1 for exponential jobs with envelope rate (3).
Also, for k = l, Th. 2 recovers the waiting time bound for
the single-queue fork-join model (without tiny tasks) [14, Th.
4]. For the sojourn time bound [14] uses a slightly different
derivation technique that can provide tighter bounds mostly at
low utilizations.

Proof. First, we derive a max-plus representation of the tiny
tasks fork-join model. Let Vi(n) be the time task i ∈ [1, k] of
job n ≥ 1 starts service. For i ∈ [2, k] and n ≥ 1 we have

Vi(n) = Vi−1(n) + Zi−1(n), (23)

where Zi−1(n) is the time from the start of task i− 1 of job
n until the next server becomes idle and hence available. For
n = 1 we have V1(1) = A(1) and for i = 1 and n ≥ 2

V1(n) = max{A(n), Vk(n− 1) + Zk(n− 1)}. (24)

By repeated substitution of (23) into (24), it follows for i ∈
[1, k] and n ≥ 1 that

Vi(n) = max
m∈[1,n]

{A(m) + Zi−1(m,n)}, (25)

where

Zi−1(m,n) =

i−1∑
j=1

Zj(n) +

n−1∑
ν=m

k∑
j=1

Zj(ν). (26)

It is straightforward to express the departure time D(n) of
job n as the maximum of the departure times of all tasks
i ∈ [1, k] of job n, D(n) = maxi∈[1,k]{Vi(n)+Qi(n)} where
Qi(n) is the service time of task i of job n. An alternative
emerges when considering that at the start of service of task k
of job n there are exactly l tasks of jobs m ∈ [1, n] in service.
Hence, job n will depart no later than

D(n) ≤ Vk(n) +X(n), (27)

where X(n) = maxi∈[1,l]{Yi(n)} as in (12) and Yi(n) for
i ∈ [1, l] are the residual service times of the tasks, including
task k of job n that are in service when task k of job n
starts service. Among these l tasks may be tasks of earlier
jobs m < n that may finish later than the tasks of job n.
Since the maximum in X(n) in (27) implies that all tasks of all
jobs m ∈ [1, n] have finished service, our results incorporate
the additional synchronization constraint that jobs depart in
sequence. Inserting (25) into (27) this expands to

D(n) ≤ max
m∈[1,n]

{A(m) + Zk−1(m,n) +X(n)}.

If we define the job service process to be

S(m,n) = Zk−1(m,n) +X(n)

then we obtain D(n) ≤ maxm∈[1,n]{A(m)+S(m,n)}, hence
the fork-join tiny tasks model is a max-plus server.

As in the proof of Lem. 1, we have Yi(n) ∼ Exp(µ) iid,
and Zi(n) ∼ Exp(lµ) iid. The envelope rates ρX and ρZ are
derived exactly as in (15) and (16), respectively.

The waiting time of task i ∈ [1, k] of job n ≥ 1 is defined as
Wi(n) = Vi(n)−A(n). With (25) and a variable substitution it
follows that Wi(n) = maxm∈[1,n]{Zi−1(n−m+1, n)−A(n−
m + 1, n)}. Hence, for any θ > 0 we can write P[Wi(n) >
τ ] = P[maxm∈[1,n]{eθUi(m)} > eθτ ] where

Ui(m) = eθ(Zi−1(n−m+1,n)−A(n−m+1,n)). (28)

Similarly, the sojourn time of job n ≥ 1 is defined as
T (n) = D(n)−A(n). Substituting (27) it follows that T (n) ≤
maxm∈[1,n]{Zk−1(n−m+1, n)−A(n−m+1, n)}+X(n). For
any θ > 0 we have P[T (n) > τ ] = P[maxm∈[1,n]{eθU(m)} >
eθτ ] where

U(m) = eθ(Zk−1(n−m+1,n)−A(n−m+1,n)+X(n)). (29)

Given iid inter-arrival times it follows for (28) and (29) that

Ui(m+ 1) = Ui(m)eθ(
∑k

j=1 Zj(n−m)−A(n−m,n−m+1)),



where we used (26) and A(n−m,n) =
∑n−1
ν=n−mA(ν, ν+1).

Using the independence of A(n−m,n−m+1) and Zj(n−m)
we can write the conditional expectation

E[Ui(m+ 1)|Ui(m), Ui(m− 1), . . . , Ui(1)]

=Ui(m)E
[
eθ

∑k
j=1 Zj(n−m)

]
E
[
e−θA(n−m,n−m+1)

]
.

Next, we apply the envelope rates ρA(−θ) of A(n −m,n −
m+ 1) and ρZ(θ) of Zj(n−m). If kρZ(θ) ≤ ρA(−θ), then
E
[
eθ

∑k
j=1 Zj(n−m)

]
E
[
e−θA(n−m,n−m+1)

]
≤ 1 and

E[Ui(m+ 1)|Ui(m), Ui(m− 1), . . . , Ui(1)] ≤ Ui(m),

i.e., Ui(m) is a supermartingale. Applying Doob’s inequality
for submartingales [40, Th. 3.2] and the reformulation for
supermartingales [36], [37] for non-negative U(m) it holds
for m ≥ 1 that

xP

[
max
m∈[1,n]

{Ui(m)} ≥ x
]
≤ E[Ui(1)]. (30)

For the waiting time, we derive with (28) and A(n, n) = 0
that

E[Ui(1)] = E
[
eθ

∑i−1
j=1 Zj(n)

]
≤ eθ(i−1)ρZ(θ).

In the case of the sojourn time, we use (29) to derive

E[U(1)] = E
[
eθ(

∑k−1
j=1 Zj(n)+X(n))

]
≤ eθ((k−1)ρZ(θ)+ρX(θ)).

By insertion into (30) and letting x = eθτ we obtain the
bounds in Th. 2.

In Fig. 8, we compare sojourn time bounds obtained for the
single-queue fork-join and split-merge models with l = 50
servers and a varying number k of tiny tasks per job. For
comparison we also show the sojourn time bounds of an
equivalent system with the ideal partition of jobs into l
equisized tasks. The bounds in the figure are evaluated with
violation probability ε = 10−6. In this comparison we increase
the number of tasks per job k, and decrease the mean size of
a task proportionally, so that the mean job workload E[L(n)]
remains constant. Specifically we use iid inter-arrival times
A(n, n + 1) ∼ Exp(λ = 0.5), and iid task service times
Qi(n) ∼ Exp(k/l) for l = 50. Therefore the jobs’ workloads
have a L(n) ∼ Erlang(k, k/l) distribution, and constant mean
E[L(n)] = l as we increase k. The utilization follows as
% = λ = 0.5. In case of the ideal partition, for an Erlang(k, µ)
process the corresponding envelope rate would be

ρQ(θ) =
k

θ
ln

(
µ

µ− θ

)
for θ ∈ (0, lµ). Substituting µ = l k/l = k we obtain ρQ(θ)
that can be inserted into Th. 1.

As the number of tasks k increases, the sojourn time bound
of the fork-join model with tiny tasks quickly approaches that
of the ideal partition, as seen in Fig. 8(a). Fig 8(b) includes
sojourn time bounds for the tiny tasks split-merge model for
comparison. For small k, the divergence between the models
is quite large. This is a consequence of the restricted stability
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Fig. 9. Sojourn time bounds for the single-queue fork-join and split-merge
models with tiny tasks, relative to the sojourn time bounds for the ideal
partition for different utilizations. The remaining parameters are as in Fig. 8.

region of the split-merge model. For large k, both models
approach the ideal partition.

To see this convergence more directly, in Fig. 9 we plot the
sojourn time statistics of the split-merge and fork-join systems
relative to those achieved by the ideal task partition. This is
shown for utilizations of 0.3, 0.5, and 0.7. The remaining
parameters are as in Fig. 8. Here we see the relative sojourn
times approach 1 as k becomes large. In the case of the fork-
join model, shown in Fig. 9(a), the convergence is quicker
if the utilization is larger. This is because the waiting time
tends to dominate the sojourn time at higher utilization. Note
that large straggler tasks (that are mitigated in case of tiny
tasks) have a large impact on the time a job spends in service.
However, due to flexible mapping of tasks to servers in the
single-queue fork-join model, stragglers have little impact
on the waiting time. This is different in case of the split-
merge model where straggler tasks block the following jobs
from entering service. A consequence of this is the observed
reduction of the stability region due to idling of servers while
waiting for stragglers. Due to the reduced stability region, the
split-merge model has a much higher sensitivity to an increase
of the utilization that can be mitigated only in case of a large
degree of tinyfication.

V. CONCLUSIONS

We have shown, through analytical results and simulation,
that increasing the granularity of the tasks in split-merge sys-
tems greatly increases their stability region. We similarly show
that increasing task granularity improves the performance of
both split-merge and fork-join systems, and that in the limit
they approach the performance of the optimal task partition.

This work provides a theoretical basis for the common
practice of addressing performance issues in parallel systems
by increasing the granularity of the job partitioning. It provides
a basis to understand the rate and limits of performance im-
provements possible through such refinements. Furthermore,
this work challenges the conclusion that the split-merge model
should be regarded as impractical. In fact, real world systems
may behave like split-merge quite naturally, and the stabil-
ity and performance issues are effectively mitigated through
refinement of the task partitioning.
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