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ABSTRACT
In this paper, we consider a multi-access communication channel

with many transmitters that randomly enter a channel and send

their data to a receiver. The transmitters are not synchronized and

the receiver does not send any feedback to the transmitters. We

propose a Medium Access Control (MAC) protocol, which we call

Multi-Access Spreading over Time (MAST). In this protocol, in order

to mitigate the effects of user interference, each transmitter spreads

its access over a time frame that is much larger than its encoded

and modulated packet size. In order to perform this operation, the

transmitters choose a spreading matrix from a set, which is known

by all the transmitters and the receiver. We obtain the packet de-

coding probability analytically under user interference conditions,

and substantiate our results with simulations. We finally compare

the symbol-error probability performance of our protocol with the

one of the Zig-zag protocol, and show that MAST outperforms the

Zig-zag protocol under the same spreading conditions in both low

and high signal-to-noise ratio regimes.
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• Networks → Network performance modeling; • Comput-
ing methodologies → Modeling methodologies.
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1 INTRODUCTION
Since the proposal of the ALOHA protocol more than four decades

ago, data transmission in random multiple access communication

settings became one of the research objectives in communication
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studies. The minimization of user interference on other users be-

came one of the investigation targets. Nevertheless, with changing

conditions and advances in emerging technologies, there is still a

need for better medium access control (MAC) protocols and trans-

mission methodologies. For instance, increasing network density,

steadily growing demand for higher data rates, spectrum scarcity

and hidden-node problems may lead to imminent packet collisions

[23]. Likewise, the rise of machine-type communications brings

up the necessity to support a massive number of transceivers that

become active in an uncoordinated manner, and hence requires the

use of coding theory and its tools for designing efficient random

access protocols [15]. Moreover, the transmission of data packets

without error, or with error as small as possible, is another chal-

lenge in device-to-device communications because of the constraint

of no-feedback messages [21].

In this paper, we focus on a multi-access channel scenario where

many transmitters randomly enter a wireless medium to send their

data to a common receiver. One can consider Internet of things
or cyber-physical systems where certain units (transmitters) make

certain measurements within certain time periods, and send the

collected data to a sink (receiver). We assume that collisions of

data packets are inevitable and that the receiver cannot send any

feedback to many transmitters. Since there is no information flow

from the receiver to the transmitters, the transmitters are non-

synchronized, which makes the transmission of data packets with

error as small as possible very crucial. In order tomitigate the effects

of user interference on decoding performance at the receiver, we

introduce aMAC protocol, where each transmitter spreads its access

over a time frame longer than its encoded and modulated packet

size. Particularly, each transmitter converts its data packets into

larger transmission packets by multiplying them with a spreading

matrix. We call our protocol Multi-Access Spreading over Time

(MAST). MAST is easy to implement at the transmitters and the

receiver, and it can support the receiver to decode data in case

of collisions involving many packets. Moreover, unlike the Zig-

zag decoding protocol, which was introduced by Gollakota et al.
[7] and studied by many others, the receiver is required to detect

only one packet rather than many copies of one packet. Given a

desired packet error probability constraint, MAST also supports

more transmitters than ALOHA does.

In the sequel, we continue with the related work in Section 1.1.

Then, we describe our transmission protocol in Section 2. Specifi-

cally, we start with simple examples for a smooth introduction of

the protocol in Section 2.1, and then define the spreading matrix

in Section 2.2. Subsequently, we achieve analytical performance

measures when a single spreading matrix is employed, and substan-

tiate them with numerical demonstrations in Sections 2.3 and 2.4,

respectively. We further improve the protocol by employing a set
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of spreading matrices instead of using a single spreading matrix

in Section 3. Subsequently, we compare the performance of MAST

with the Zig-zag protocol in Section 4. Finally, we conclude the

paper in Section 5.

1.1 Related Work
There is a growing body of literature about the Zig-zag decoding

protocol, which has been introduced in [7] as a solution to com-

bat user interference in asynchronous multi-access channels. The

authors showed that the Zig-zag decoding can attain the same

throughput as if the colliding packets were a priori scheduled in

separate time slots, while causing no change to the 802.11 protocol

and introducing no extra overhead when there are no collisions.

Considering the Zig-zag decoding as hard-decision belief propaga-

tion, the authors in [25] built a soft-decoding technique on top of

the existing Zig-zag protocol, which maintains likelihoods and runs

in a loopy manner on the factor graph created by the linear equa-

tions formed by collided packets. Moreover, taking into account the

possible effects of propagation delays on the performance of the

Zig-zag protocol, the authors in [27] proposed a distributed ran-

dom access MAC protocol named Asynchronous Flipped Diversity

ALOHA, which combines a flipped diversity transmission scheme

and the Zig-zag protocol.

Regarding the performance, the authors in [19] analyzed the per-

formance of the Zig-zag protocol for the case of two receiving nodes

with two simultaneous transmitters in an additive white Gaussian

noise (AWGN) channel and showed that the expected length of the

error burst is less than two symbols. The authors in [20] proposed

an iterative Zig-zag decoding protocol to mitigate the error aggre-

gation, and showed that their approach can effectively defeat the

error aggregation. Furthermore, the authors in [12] analyzed and

simulated the Zig-zag decoding in idealized multi-access channel

models, and showed that the Zig-zag decoding can significantly

increase the performance levels when compared to ALOHA and

Carrier-sense multiple access protocols. More recently, the authors

in [24] proved that the Zig-zag protocol introduces lower encoding

and decoding complexities than the other existing techniques at

the expense of a slight transmission rate loss.

At the same time, there are techniques proposed as an alterna-

tive to the Zig-zag decoding. For instance, the authors in [17, 18]

introduced static and dynamic assignment schemes to select trans-

mission slots out of available ones in a frame using group divisible

(combinatorial) designs. Moreover, the authors in [2] and the ones

in [5] proposed the differential overlap decoding and the iterative

collision recovery, respectively. Another approach to deal with the

adverse results of random access is based on graph codes. The

authors in [11] viewed the iterative collision resolution process

as message-passing decoding on an appropriately defined Tanner

graph, and showed that the well-known solution distribution is op-

timal and that the resulting throughput efficiency can be arbitrarily

close to one. The authors in [14, 16] exploited a bipartite graph

representation of the successive interference cancellation process,

resembling iterative decoding of generalized low-density parity-

check codes over the erasure channel, to optimize the selection

probabilities of the component erasure correcting codes through a

density evolution analysis. They derived the component codes that

Figure 1: Transmitter block diagram for transmitterm.

approach the capacity bounds. More recently, the authors in [22]

developed a multiple access scheme for machine-to-machine com-

munications based on the capacity-approaching analog fountain

code to efficiently minimize the access delay.

2 TRANSMISSION PROTOCOL
We consider a communication scenario, in which many transmit-

ters send data to a receiver. The transmitters are non-synchronized;

each transmitter randomly enters the channel and sends its data

regardless of the activities of the other transmitters. We assume

that, following the reception of each packet, the receiver does not

send any acknowledgment to the corresponding transmitter to in-

form about the status of its packet. Therefore, the transmitters send

their packets only once. All the transmitters encode and modulate

the same number of bits, n, into one data packet, where a packet

is composed of N symbols. Moreover, all the transmitters use the

same encoding and modulation techniques. After the composition

of each packet, the transmitters spread their packets over time so

that the receiver can take advantage of this spreading to decode the

data in case of a packet collision. In other words, each transmitter

converts an encoded and modulated packet of N symbols into a

super packet of A symbols, where A > N . The relevant transmit-

ter block diagram is displayed in Figure 1. Specifically, given that

dm = [d∗m1
, · · · ,d∗mN ]∗ and xm = [x∗m1

, · · · ,x∗mA]
∗
are the data

packet and the super packet sent by transmitterm, respectively, the

spreading process is expressed as follows: xm = Gdm , where G is

the A × N spreading matrix. Above, {∗} is the conjugate transpose

operator. Notice that when a transmitter enters the channel without

spreading its access, its packet takes a space of N symbols in the

channel over time. On the other hand, after the spreading process,

its packet takes a space ofA symbols over time. Therefore, we define

the entire process as Multi-Access Spreading over Time and use

the term MAST. Here, our objective is to decrease the symbol-error

probability before the demodulation process as much as possible.

In order to better understand the aforementioned transmission

protocol, we first provide a simple example, and then provide a gen-

eral model definition and substantiate our results with numerical

results in the following sub-sections.

2.1 3-Transmitter and 4-Transmitter Collisions
Let us consider the collision cases given in Figure 2 and Figure

3, where transmitter m has dm = [d∗m1
d∗m2

d∗m3
]∗ as the 3 × 1

input vector (data packet) to the spreading process and xm =

[x∗m1
· · · x∗m9

]∗ as the 9 × 1 channel input vector (super packet)

form ∈ {1, 2, 3}. As one can see, the channel input vector, xm , is

composed of symbols formed by re-ordering and adding the sym-

bols of the input vector, dm , in a specified pattern. For instance,



Figure 2: Three packets collide in three entries. Ei : ith entry
for i ∈ {1, 2, 3}. The dashed arrow indicates the direction.

the first two symbols sent by transmitterm over the channel are

xm1 = dm1 + dm3 and xm2 = dm2 + dm3, respectively. The trans-

mitters enter the channel in different time slots
1
and their packets

collide partially with each other in Figure 2, while transmitter 2

and transmitter 3 enter the channel in the same time slot and trans-

mitter 1 enters in a different time slot in Figure 3. Here, if one or

more transmitters enter the channel in one time slot, we call it an

entry. Therefore, we have three entries in Figure 2 and two entries

in Figure 3. Furthermore, we have yi as the channel output in the

ith time slot, which contains the noise component,wi , as well.

The channel input-output relation in Figure 2 is written as

y =
[
Gd1
02×1

]
+


01×1
Gd2
01×1

 +
[
02×1
Gd3

]
+w = Hd +w, (1)

where d = [d∗
1
d∗
2
d∗
3
]∗ is the 9 × 1 input vector, y = [y∗

1
· · · y∗

11
]∗

is the 11 × 1 received vector, and

H =

00×3 01×3 02×3
G G G

02×3 01×3 00×3

 (2)

is the 11 × 9 channel matrix. Above, 0a×b is the a × b zero matrix,

and the spreading matrix for this specific example is

G =

1 1 1 0 1 1 0 1 0

0 1 0 0 0 1 1 1 1

1 0 0 1 1 0 0 0 1


†

, (3)

where {†} is the transpose operator. Furthermore,w = [w∗
1
· · · w∗

R ]
∗

is the noise vector with zero-mean, and independent and identi-

cally distributed samples. While G is a fixed matrix throughout the

entire data transmission process, the channel matrix H is random

and changes element-wise and in size depending on the time slots

in which the transmitters enter the channel. Now, re-ordering (1)

as

(H∗H)−1H∗y = d + (H∗H)−1H∗w, (4)

1
One time slot is equal to one signal sampling or symbol period. We assume that

relative delay and phase offsets of each user in one time slot are estimated at the

receiver by employing pilot symbols [19].

Figure 3: Three packets collide in two entries. Ei : ith entry
for i ∈ {1, 2}.

we can state that if the rank of H is 9 and H∗H is invertible, and if

the transmission power is relatively large with respect to the noise

power, the receiver can possibly decode
2,3

all the data. Principally,

given G in (3), the receiver can decode all the data in case of a

collision of 3 packets or less with any form of H as long as the

transmitters enter the channel in different time slots.

As for the case in Figure 3, one can see that forming the chan-

nel input as d = [d∗
1
d∗
2
d∗
3
]∗ will not help the receiver obtain the

messages, because the channel matrix will be

H =
[
G 01×3 01×3

01×3 G G

]
, (5)

which has rank less than 9. On the other hand, we can re-define the

input as d = [d∗
1
,d∗

2
+ d∗

3
]∗, which is a 6× 1 vector, and the channel

matrix as

H =
[
G 01×3

01×3 G

]
, (6)

where H is a 10 × 6 matrix with rank 6. Hence, after a successful

decoding, the receiver obtains d1 and d2 + d3. However, the d2-d3
pair has more than one solution. Basically, in case more than one

user enters the channel in the same time slot, the receiver, being

able to detect these simultaneous entries, can treat them as one

packet during the decoding process and discard them after the

decoding process. Similarly, let us consider the case given in Figure

4, where 4 packets from four different users collide, and two of them

enter the channel in the same time slot. In this case, the receiver

can obtain packets d1 and d4, but not d2 and d3. Here, we define
the channel input as d = [d∗

1
,d∗

2
+ d∗

3
,d∗

4
]∗, which is a 9 × 1 vector,

and the channel matrix as given in (2). Specifically, the receiver

obtains d1, d2 +d3 and d4, and discards d2 +d3 because there is no

2
Since we focus on interference management in the MAC layer rather than the

effects of packet detection and noise on system performance in the physical layer,

we assume that the receiver can detect all the collisions correctly, and we keep the

noise parameter out of our analysis unless otherwise needed, and assume that the

signal-to-noise ratio is high enough to consider the noise negligible. However, we

employ the noise parameter in our simulations in low signal-to-noise ratio regimes.

As for the detection, we refer interested readers to [1, 6, 8, 26] and references therein.

3
One can consider (4) as least squares-based zero forcing.



Figure 4: Four packets collide in three entries. Ei : ith entry
for i ∈ {1, 2, 3}.

single solution for the d2-d3 pair. This limitation will be resolved

in Section 3.

2.2 Spreading Matrix
Given G in (3), as long as the number of entries is less than or equal

to 3 in any collision case with any H, the receiver can decode all

the packets that do not enter the channel in the same time slot

because the rank of any random H is 9, 6 and 3 in the case of 3, 2

entries and 1 entry, respectively, and the inverse of any random

H∗H exists. Herein, apart from the matrix in (3), we can find any

other spreading matrix with rank 3 and size A-by-3 for A ≥ 7,

which will provide the receiver the flexibility to decode at most

three packets in case of a collision of three or more packets with

maximum three different entries. In more detail, the receiver in the

aforementioned example can decode a packet from a user, if the

packet enters the channel in a collision with three or less entries

and shares its entry with no other user.

Remark 1. When there is a collision of three entries, the size of H,
i.e., the number of rows, randomly changes between A+ 2 and 3A− 2.
Because the number of rows in H should be minimum 9 in the given
example, we have A ≥ 7.

Generalizing the aforementioned scenario, given that we want

to establish a multi-access communication protocol, in which the

receiver can decode up to Q transmitted packets in a collision case

of maximum Q entries, what should the spreading matrix, G, be?
In the following, we provide a definition for the spreading matrix

that we consider in MAST.

Definition 2.1 (Spreading Matrix). Let G be an A × N complex

matrix, i.e., G ∈ CA×N , where A ≥ (N − 1)Q + 1 and 0 < Q ∈ N+.
Then, if any random channel (collision) matrix H has rank qN in

the case of q entries for q ≤ Q and q ∈ N+, and if the inverse of

any H∗H exists, we call G a spreading matrix.

Remark 2. The Asynchronous Flipped Diversity ALOHA protocol
provided in [27] is a special case of MAST as it can be expressed with
a spreading matrix; G =

[
IN ĨN

]†, where IN and ĨN are the N × N
identity and anti-diagonal identity matrices, respectively. G supports
decoding up-to 2 entries.

2.3 Performance Analysis
We conduct a performance analysis from a perspective of one trans-

mitter entering the channel along with many other transmitters,

given a multi-access communication scenario, where every trans-

mitter employs the same encoding and modulation techniques, and

the same spreading matrix, G, which is defined in Definition 2.1.

We assume that transmitter m enters the channel in the slot at

time t0. Notice that transmitterm spreads its data packet over a

frame of A time slots from t0 to t0 + A − 1. Moreover, we denote

the number of transmitters entering the channel in one time slot

by random variable K with probability mass function Pr(K = k).
Particularly, the probability that k transmitters enter the channel in

the same time slot is Pr(K = k). We also consider infinitely many

transmitters that can possibly become active at any time.

The receiver will fail decoding the packet of transmitterm, when

one or more other transmitters enter the channel in time slot t0
alongside transmitterm, or when transmitterm enters the chan-

nel in a collision with more than Q entries. Hence, we have the

following proposition regarding the decoding success probability.

Proposition 2.2. In the aforementioned multi-access scenario,
where each transmitter employs the spreading matrix given in Defini-
tion 2.1, the decoding success probability is

Pr

{ Successful decoding
probability of a packet

of transmitterm
at the receiver

}
=

Q∑
q=1

qρ2A−1
(
1 − ρA−1

)q−1
, (7)

where ρ = Pr(K = 0) is the probability that there are zero transmitters
entering the channel in one time slot.

Proof: See Appendix A. �

2.4 Numerical Results
We substantiate our analytical results with numerical demonstra-

tions and simulations. Throughout the rest of the paper, unless

otherwise stated, we consider the following settings. We assume

that the number of transmitters entering the channel in one time

slot, K , is Poisson-distributed, i.e., Pr(K = k) = exp(−λ) λ
k

k ! , where

λ is the average number of transmitters that enter the channel in

one time slot. We further consider that the symbol rate isW = 10
6

symbols per second. Hence, the average number of transmitters that

enter the channel in one second is 10
6λ, which can be considered

as the average number of packets in the channel in one second.

In Figure 5, we plot the average number of transmitters entering

the channel in one second as a function of the packet decoding

failure probability, i.e., the complement of the probability in (7),

for different maximum number of entries to be supported in one

collision case,Q . Given anyQ , we employGwith sizeA×N , and set

A = (N − 1)Q + 1. Notice that Q = 1 refers to the ALOHA protocol.

We have the packet size 50 and 100 in the upper and lower figures,

respectively, i.e., N = 50 and N = 100. We compare the simulation

results with the analytical results. There is a performance increase



with increasingQ ; the system can support more transmitters in the

channel for a desired packet decoding failure probability. Moreover,

the performance gap increases with the decreasing packet decoding

failure probability. The reason behind this increase is the fact that

the probability of collisions with more entries than the entries that

the spreading matrix can support decreases with the increasing

spreading size.

We further plot the decoding success probability as a function of

the maximum number of entries to be supported, Q , in Figure 6 for

different packet sizes, i.e., N = 50, 75 and 100. We set the average

number of transmitters per second to 1000 and 2000 in the upper and

lower figures, respectively. The decoding success probability is high

when the packet size is smaller. This is because we have a smaller

super packet size when the packet size is smaller, which leads to

collisions with fewer entries. Therefore, the probability of decoding

failure decreases with the decreasing packet size. However, the

average number of bits transmitted reliably without error, i.e., the

packet size times the decoding success probability, shows a different

tendency. As seen in Figure 7, the reliable transmission performance

is better with higher N in certain Q ranges. We display the results

in Figure 7 because the transmitters may have to transmit as much

data as possible in certain circumstances.

3 TRANSMISSION PROTOCOLWITH A SET
OF SPREADING MATRICES

In Section 2, we consider MAST with a fixed spreading matrix,

G, i.e., all the transmitters employ the same spreading matrix. Al-

though there is an increase in the performance with the increasing

spreading matrix size, i.e., increasing Q , as seen in Figure 5, the

receiver is not able to decode the packets of the transmitters that

enter the channel in the same time slot even if the number of entries

in one collision case is less than the maximum number of entries

to be supported. On the other hand, if two or more transmitters

send their data packets after spreading their access over time by

employing different spreading matrices, the receiver will possibly

be able to decode the packets of the transmitters even if they enter

the channel in the same time slot. For instance, let us consider the

example given in Figure 3, and assume that the transmitters choose

a spreading matrix from a defined set, G:

G =





1 0 1

1 1 0

1 0 0

0 0 1

1 0 1

1 1 0

0 1 0

1 1 0

0 1 1

︸       ︷︷       ︸
G1

,



0 1 1

0 0 1

1 1 1

1 0 1

1 0 1

0 1 0

0 0 1

1 0 1

1 1 0

︸       ︷︷       ︸
G2

,



0 1 0

1 1 1

0 1 0

1 0 0

1 0 1

0 0 0

0 1 1

1 1 1

0 1 1

︸       ︷︷       ︸
G3



. (8)

Recall that G1 is given also in (3). Now, let us take into account

the example that each transmitter picks one of the three matrices

separately, i.e., the transmitters do not choose the same matrix.

Particularly, let us assume that transmitterm chooses Gm form ∈

{1, 2, 3}. Then, we can re-write the channel matrix given in (5) as

H =
[
G1 01×3 01×3
01×3 G2 G3

]
, which is 10×9 matrix with rank 9. Now,

one can easily see that the inverse ofH∗H exists and that (1) has one

solution. Even if all the transmitters in the same example enter the

channel in the same time slot, the receiver will be able to obtain the

transmitted symbols correctly as long as the transmitters employ

different spreading matrices.

Regarding a scenario with more transmitters than the cardinal-

ity of the spreading matrix set, which is 3 in the example, one

can design a system in which the transmitters randomly choose a

spreading matrix from the set
4
. Now, for instance, given that two

transmitters enter the channel in the same time slot, the probability

that the transmitters choose the same spreading matrix is
1

3
. Notice

that with the increasing cardinality of the given set, the probability

that two or more transmitters entering the channel in the same

time slot choose the same spreading matrix decreases. We note that

we display only three spreading matrices as examples in G; how-

ever, one can easily extend the set into a set with more than three

matrices by finding the matrices that guarantee that the inverse of

H∗H exists in any collision case of up-to 3 entries.

As for the packet decoding probability, it is not straightforward

to obtain an analytical expression given a set of spreading matrices

since we have to consider all of the possible collision cases and

take the expectation over all the available spreading matrices in

the defined set. Therefore, we rather take advantage of simulation

tools and compare the performance levels of the aforementioned

protocols, i.e., the protocol with the single spreading matrix given

in (3), G, and the protocol with the set of spreading matrices given

in (8), G. Regarding high signal-to-noise ratio and considering

that the binary-phase shift keying (BPSK) modulation is employed,

we plot the symbol-error probability as a function of the average

number of transmitters per time slot in Figure 8. The blue solid line

is the performance obtained when the transmitters employ only G,
and the red dotted line indicates the performance levels obtained

after employing G. Clearly, we observe a significant increase in the

decoding performance.

Moreover, we employ larger sets, G, and calculate the symbol-

error probability when the packet size is 50 and 100. We have com-

posed three different sets for each packet size setting. Specifically,

we have employed the following sets:

(1) Set 1 hasM = 20 matrices with size 1000 × 50,

(2) Set 2 hasM = 30 matrices with size 1500 × 50,

(3) Set 3 hasM = 40 matrices with size 2000 × 50,

when N = 50, and

(1) Set 1 hasM = 20 matrices with size 2000 × 100,

(2) Set 2 hasM = 30 matrices with size 3000 × 100,

(3) Set 3 hasM = 40 matrices with size 4000 × 100,

when N = 100. In order to obtain the aforementioned sets, we find

matrices by running exhaustive search methods, with which we can

obtain the inverse of H∗H in any collision case of up-toM entries
5
.

4
In a system where there is no information flow from the receiver to the trans-

mitters, one can embed the spreading matrix set to the transmitters and the receiver

during the system initialization process.

5
In some cases, especially when the data packets are larger, even if the inverse of

H∗H exists, H∗H may be ill-conditioned, and hence amplifies the noise. Here, several

regularization techniques, e.g., ridge regression, can be considered at the receiver.
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the analytical and simulation results, respectively.
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Figure 8: Symbol-error probability vs. average number of
transmitters per time slot.

We set the maximum number of entries to be supported to Q = M .

We assume that there are infinitely many potential transmitters and

that the number of transmitters entering the channel in one time slot

is Poisson-distributed.We set the sampling rate toW = 10
6
symbols

per second. Hence, the average number of transmitters entering

the channel in one second isWλ. We further note that because we

employ the BPSK modulation, the symbol-error probability is equal

to the uncoded bit error probability after the demodulation process.

However, our analysis can easily be extended to scenarios with

other modulation techniques.

In Figure 9, we plot the symbol-error probability as a function

of the average number of transmitters entering the channel per

second. We consider a high signal-to-noise ratio regime; therefore,

the noise is negligible. The reason behind this assumption is to
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Figure 9: Symbol-error probability vs. average number of transmitters per time second.M is the cardinality of a given set.

understand the effects of user interference on performance levels.

We can observe that the decoding performance gets better with the

increasing cardinality of the sets, and the increasing access spread-

ing (i.e., the increasing spreading matrix size). We also emphasize

that, as seen in Figure 9, the symbol-error probability decreases to

10
−3

when the average number of transmitters is around 2.5 × 10
4

and 1.25 × 10
4
given that the packet size is 50 and 100 symbols,

respectively, in a channel sampled with rate 10
6
symbols per second.

This means that one can easily reach a complete channel utilization

with the choice of appropriate error-control coding techniques.

Moving on now to understand the decoding performance in

low signal-to-noise ratio regimes, we set the average number of

transmitters per second to 3 × 10
4
and 1.5 × 10

4
when the packet

size is 50 and 100, respectively. Then, we plot the symbol-error

probability as a function of the signal-to-noise ratio in Figure 10.

We define the signal-to-noise ratio at transmitterm as

SNR
MAST

m =
E{| |xm | |2}

Nσ 2

w
=
E{| |Gdm | |2}

Nσ 2

w
, (9)

where σ 2

w is the noise variance and E{·} is the expectation opera-

tor. Notice in Figure 9 that the symbol-error probability is 0.0445,

0.0178, and 0.0074, when the cardinality of the spreading matrix set

is 20, 30, and 40, respectively, given that the packet size is 50 and

the average number of transmitters is 3×10
4
. Likewise, the symbol-

error probability is 0.0479, 0.0194, and 0.0072, when the cardinality

of the spreading matrix set is 20, 30, and 40, respectively, given that

the packet size is 100 and the average number of transmitters is

1.5× 10
4
. Specifically as seen in Figure 10, we can observe that with

the increasing signal-to-noise ratio, the symbol-error probability

decreases to the values that are obtained in Figure 9. Finally, the de-

coding performance gets better in low signal-to-noise ratio regimes

with the increasing cardinality and spreading size.

4 COMPARISONWITH THE ZIG-ZAG
PROTOCOL

As far as asynchronous multi-access protocols are concerned, the

Zig-zag protocol is one leading technique in the literature that

can mitigate the effects of user interference. However, there is

an implementation cost following the deployment of the Zig-zag

protocol. Specifically, receivers have to detect all the copies of

the transmitted packets, or they have to detect as many copies as

possible to alleviate user interference. In addition, each copy of

a packet necessitates the use of a header and preambles in order

to be detected over a channel. On the contrary, MAST spreads a

data packet over a larger time frame and sends one copy only;

hence, receivers have to detect only once. Since there is only one

big packet, the cost of headers and preambles is decreased as well.

Hence, in order to compare MAST with the Zig-zag protocol, we

translate the Zig-zag protocol into our framework.

Remark 3. In the Zig-zag protocol, we can express the channel
input with a spreading matrix. Particularly, we can formulate the
spreading matrix as follows: G =

[
IN 0N×α1

IN . . . 0N×αZ−1
IN

]†,
where Z is the number of packet repetitions, and αz for z ∈ {1, · · · ,Z-
1} is a random variable, which indicates the time gap between the
zth and (z + 1)th copies of a packet. The matrix, G, is composed of
Z identity matrices and Z − 1 zero matrices. In addition, the size of
G varies randomly. For more information on the Zig-zag protocol
and other repetition-based packet transmissions, we refer interested
readers to [3, 4, 7, 9, 10, 13]. We also note that one can easily compose
a set in MAST, which has spreading matrices with varying column
size although we have sets with fixed-size matrices in our example in
Figure 9 and Figure 10.

We compare the performance levels of MAST and the Zig-zag

protocol under the conditions of spreading range and packet size.

With spreading range, we refer to the period that the copies of

a packet spans over time in the Zig-zag protocol and the access

spreading in MAST that we describe in Section 2. As for the Zig-

zag protocol, we have two implementations, namely Zig-zag 10

and Zig-zag 20, which refer to the Zig-zag protocol with 10 and

20 packet repetitions, respectively. Each transmitter waits for a

random amount of time between the copies of a packet, where the

waiting duration is uniformly distributed over a range between

one time slot and three times the packet size, i.e., between one

time slot and 3 × N time slots. Notice that when a packet of 50

symbols is transmitted in Zig-zag 10 and Zig-zag 20, its copies span

a range up-to 1850 and 3850 time slots, respectively, and that when

a packet of 100 symbols is transmitted in Zig-zag 10 and Zig-zag 20,

its copies span a range up-to 3700 and 7700 time slots, respectively.

In the aforementioned MAST protocols, a message spans 1000, 1500

and 2000 time slots when the packet size is 50, and 2000, 3000 and

4000 time slots when the packet size is 100.

In both MAST and the Zig-zag protocol, since we are interested

in understanding the system performance associated with asyn-

chronous user interference management, we do not focus on the



0 10 20 30 40 50

Signal-to-noise ratio (dB)

10-2

10-1

100

S
ym

bo
l-e

rr
or

 p
ro

ba
bi

lit
y

W =3x104

M=20, size = 1000 50
M=30, size = 1500 50
M=40, size = 2000 50

0 10 20 30 40 50

Signal-to-noise ratio (dB)

10-2

10-1

100

S
ym

bo
l-e

rr
or

 p
ro

ba
bi

lit
y

W =1.5x104

M=20, size = 2000 100
M=30, size = 3000 100
M=40, size = 4000 100

Figure 10: Symbol-error probability vs. signal-to-noise ratio.

detection of transmitted packets by the receiver; therefore, we as-

sume that the start and end of data packets in terms of time slots are

detected correctly and available at the receiver. We refer interested

readers to [7, Sec. 5] for more information on packet collisions

and detections. Moreover, we define the signal-to-noise ratio in the

Zig-zag protocol as

SNR
Zig-zag

m =
10E{| |dm | |2}

Nσ 2

w
and SNR

Zig-zag

m =
20E{| |dm | |2}

Nσ 2

w
,

when the packet repetition is 10 and 20, respectively. Particularly,

when we have SNR
Zig-zag

m = SNR
MAST

m , the amount of energy spent

for the transmission of one data packet is same in all the protocols.

This is an important constraint in low signal-to-noise ratio regimes

in order to perform a fair comparison.

As seen in Figure 11 and Figure 12, the red solid and light blue

dashed lines with plus (‘+’) marker indicate the performance levels

when Zig-zag 10 and Zig-zag 20 are employed, respectively. As seen

in the figures, the performance of MAST with spreading size 1500

and 2000 outperforms Zig-zag 10 with spreading size 1850 when

N = 50, and similarly, the performance of MAST with spreading

size 3000 and 4000 outperforms Zig-zag 20 with spreading size 3700

when N = 100. The performance of Zig-zag 20 is better, but it takes

an effort of 20 copies of a packet with a span over a range up-to

3850 and 7700 time slots given N = 50 and N = 100, respectively.

Particularly, the Zig-zag protocol needs to span a packet on a time

frame more than MAST needs in order to catch the performance

of MAST. Considering that we do not have the preambles, which

increase the size of transmitted packets, and the detection errors in

these simulations, we expect that the performance of MAST will

be better than the performance of the Zig-zag protocol in practice.

Note that the transmitters send preambles only once in MAST,

while they have to send a group of preambles for each copy in the

Zig-zag protocol. Moreover, the receiver has to detect one packet

in MAST, whereas it has to detect more than one packets in the

Zig-zag protocol.

5 CONCLUSION
We have proposed a MAC protocol in multi-access communica-

tion scenarios. We have called it MAST. Our proposed technique

is simple to implement at the transmitter and receiver. We have

introduced MAST with simple examples, and then formulated the

performance measures. We have performed simulations to sub-

stantiate our results. We have showed that MAST can serve more

transmitters than ALOHA does for a desired minimum packet de-

coding failure probability. Our results also indicate that one can

easily reach a complete channel utilization using MAST because the

symbol-error probability can be decreased to 10
−3
. Finally, we have

compared the performance of MAST with the Zig-zag protocol, and

showed that our protocol outperforms the Zig-zag protocol when

we consider the spreading of a message over time in both protocols.
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A PROOF OF PROPOSITION 2.2
We can easily calculate the decoding failure of the packet of trans-

mitterm due to the entries of others at t0 as

Pr

{
One or more transmitters other than

transmitterm enter the channel at t0
given that transmitterm is in the channel

}
= 1 − Pr(K = 0)︸     ︷︷     ︸

ρ

. (10)

Notice that when there is another transmitter entering the channel

at the time transmitterm enters, it is not important for transmit-

term if there are other transmitters entering the channel within

the same collision or not. As for the probability that there are q
number of entries in the same collision around t0 but there are zero
transmitters entering the channel at time t0, we have

Pr

{ q number of entries in one

collision case but zero other

transmitters at t0
given that transmitterm is

in the channel at t0

}
= qρ2A−1

(
1 − ρA−1

)q−1
. (11)

Note that one of the entries in (11) is the entry of transmitterm at



(a) Transmitterm only

(b) Transmitterm plus one entry (one or more transmitters entering at the same

time)

(c) Transmitterm plus two entries (one or more transmitters in each entry)

Figure 13: No collision case, i.e., transmitter m is not inter-
fered, and two collision cases with two entries and three en-
tries, respectively.

t0, and transmitterm is the only transmitter entering the channel

at t0. In order to obtain (11), we first remark that given a collision

case, we know that there are no entries in the first A − 1 time slots

after the last entry in the collision, and in the last A − 1 time slots

before the first entry in the collision. As seen in Figure 13, where

we haveA = 5 as an example, there are no entries in the first 4 time

slots after the last entry and in the last 4 time slots before the first

entry in all three cases. Now, let us follow an induction approach,

calculate the probability that there is only one entry, which is the

entry of transmitterm, given that transmitterm enters the channel

at t0, as seen in Figure 13(a). It is easily seen that the probability that
transmitterm is the only transmitter in the channel between time

instants t0 − 4 and t0 + 4 is equal to the probability that there are no
transmitters entering the channel between time instants t0 − 4 and

t0 + 4, which is expressed as ρ9 = ρ2A−1. As for the case in Figure

13(b) with two entries, we initially note that transmitter(s) n can

enter the channel
6
either before or after transmitterm. However,

we can consider the case transmitter n enters the channel before

transmitterm, and multiply the probability by two. We also note

that we do not consider the case, when both transmitter m and

transmitter n enter the channel at t0 because this case is already
included in (10). Now, noting that transmitter n may enter the

channel in time slots between t0 − 1 and t0 − 4 (i.e., t0 − 1 and

t0 −A+ 1), we can easily calculate the probability that there are two

number of entries in one collision case but zero other transmitters

at t0 given that transmitterm enters the channel at t0 as

2ρ9
[
(1 − ρ) + (1 − ρ)ρ + (1 − ρ)ρ2 + (1 − ρ)ρ3

]
= 2ρ9(1 − ρ)

[
1 + ρ + ρ2 + ρ3

]
= 2ρ2A−1(1 − ρ)

[
1 + ρ + ρ2 + ρA−2

]
= 2ρ2A−1(1 − ρA−1),

where 2 in front of the equation comes from the fact that transmitter

n may enter the channel before or after transmitterm. Furthermore,

(1 − ρ) refers to the probability that one or more transmitters enter

the channel at the same time, and ρ9 comes from the fact that there

are no other transmitters entering the channel at t0 and that there

are no transmitters in the first A − 1 time slots after t0 and the

last A − 1 time slots before the collision starts. Now, considering

Figure 13(c), we can again see that transmitter m may enter the

channel first, second or last. Therefore, because all cases are equally

likely and have the same probability, we will only consider the case

transmitterm enters the channel last. Initially, let us consider that

the second transmitter or group of transmitters (i.e., transmitter n)
enter the channel at time instant t0 − 2 is given, and then write the

probability as

ρ9ρ(1 − ρ)
[
(1 − ρ) + (1 − ρ)ρ + (1 − ρ)ρ2 + (1 − ρ)ρ3

]
=ρ9ρ(1 − ρ)(1 − ρ4),

where ρ9 comes again due to that there are no entries at t0 other
than transmitterm and that there are no transmitters in the first

A − 1 time slots after t0 and the last A − 1 time slots before the

collision starts. Furthermore, ρ(1 − ρ) is due to the position of

transmitter n, and the rest is the sum of the probabilities of all the

possible positions of transmitter o. Furthermore, considering all

the possible positions of transmitter n and generalizing the result,

we obtain the probability that there are three number of entries

in one collision case but zero other transmitters at t0 given that

transmitterm enters the channel at t0 as

3ρ9
[
(1 − ρ) + (1 − ρ)ρ + (1 − ρ)ρ2 + (1 − ρ)ρ3

]
(1 − ρ4)

= 3ρ9(1 − ρ)
[
1 + ρ + ρ2 + ρ3

]
(1 − ρ4)

= 3ρ9(1 − ρ4)2 = 3ρ2A−1(1 − ρA−1)2,

where 3 in front of the equation comes from the fact that transmitter

m may enter the channel first, second or last. Now, generalizing

the aforementioned probabilities for q number of entries in one

collision case, we obtain the result in (11). Hence, noting the cases

the receiver succeeds the decoding of a packet, we reach the result

in Proposition 2.2.

6
With transmitter(s) n, we refer to one entry, i.e., one or more transmitters

entering the channel in the same time slot. However, we show only one transmitter in

the examples in Figure 13.


	Abstract
	1 Introduction
	1.1 Related Work

	2 Transmission Protocol
	2.1 3-Transmitter and 4-Transmitter Collisions
	2.2 Spreading Matrix
	2.3 Performance Analysis
	2.4 Numerical Results

	3 Transmission Protocol with a Set of Spreading Matrices
	4 Comparison with the Zig-zag protocol
	5 Conclusion
	Acknowledgments
	References
	A Proof of Proposition 2.2

