Aufgabe 1: Stochastischer Bandpassprozess und Stationarität

Gegeben ist der stochastische Bandpassprozess $\xi(t)$:

$$\xi(t) = A \sin(\omega_1 t + \theta)$$

mit der im Intervall $[0, 2\pi)$ gleichverteilten Zufallsvariablen θ:

$$f_{\theta}(x) = \frac{1}{2\pi}, \quad 0 \leq x < 2\pi$$

1.1 Zeigen Sie, dass der Prozess $\xi(t)$ schwach stationär ist.

1.2 Geben Sie die spektrale Leistungsdichte $\Phi_{\xi}(j\omega)$ an.

1.3 Berechnen Sie die Kreuzkorrelationsfunktion (KKF) $\varphi_{\xi\xi}(\tau)$ des Prozesses $\xi(t)$.

1.4 Berechnen Sie die AKF $\varphi_{\xi_+\xi_+}(\tau)$ des analytischen Prozesses $\xi_+(t)$.

Im folgenden habe θ einen festen Wert, und A sei eine Zufallsvariable.

1.5 Prüfen Sie nun die Stationarität des Prozesses $\xi(t)$.

Hinweis: Die Systemfunktion des Hilbert-Transformators lautet $H(j\omega) = -j \text{sign}(\omega)$.
Aufgabe 2: Bandpassprozess und äquivalenter Tiefpassprozess

Gegeben ist der stochastische Bandpassprozess \(\xi(t) \) bei der Trägerfrequenz \(\omega_e \) (vergleiche Aufgabe 1):

\[
\xi(t) = A \sin(\omega_t t + \theta)
\]

mit der im Intervall \([0, 2\pi]\) gleichverteilten Zufallsvariablen \(\theta \):

\[
f_\theta(x) = \frac{1}{2\pi}, \quad 0 \leq x < 2\pi
\]

2.1 Berechnen Sie die AKF \(\varphi_{\xi_T\xi_T}(t, t + \tau) \) des äquivalenten Tiefpassprozesses \(\xi_T(t) \). Ist \(\xi_T(t) \) schwach stationär?

2.2 Berechnen Sie die spektrale Leistungsdichte \(\Phi_{\xi_T\xi_T}(j\omega) \) des äquivalenten Tiefpassprozesses.

2.3 Berechnen Sie die AKF \(\varphi_{\xi_{TR}\xi_{TR}}(t, t + \tau) \) des Realteils \(\xi_{TR} \) des äquivalenten Tiefpassprozesses.

2.4 Zeigen Sie, dass gilt: \(\varphi_{\xi_{TR}\xi_{TR}}(\tau) = \varphi_{\xi_{TR}\xi_{TR}}(\tau) \).

2.5 Berechnen Sie die KKF \(\varphi_{\xi_{TR}\xi_{TR}}(\tau) \).
Aufgabe 3: Frequency Shift Keying (FSK)

Gegeben ist ein FSK-Signal in der äquivalenten Tiefpass-Darstellung:

$$m_T(t) = |m_T(t)| \cdot e^{j\varphi \sum_k d_k \phi(t-kT)}$$

Für den Betrag gilt $|m_T(t)| = 1$. Die Frequenzimpulsform $s(t)$ ist gegeben durch:

$$s(t) = \begin{cases} 1/T & \text{für } 0 \leq t \leq T, \\ 0 & \text{sonst} \end{cases}$$

Für die Symbole d_k gilt $d_k \in \{ \pm A \}$, und für die Phase zur Zeit $t = 0$ gilt $\varphi_T(0) = \varphi_0 = 0$.

Im folgenden werden die beiden im Symbolintervall $0 \leq t < T$ möglichen Signalformen $m_{1T}(t)$ und $m_{2T}(t)$ bzw. die zugehörigen reellen Bandpasssignale $m_1(t)$ und $m_2(t)$ betrachtet.

3.1 Wie lautet die Bedingung dafür, dass die Funktionen $m_1(t)$ und $m_2(t)$ im Intervall $0 \leq t < T$ orthogonal sind?

3.2 Berechnen Sie die Impulskreuzkorrelationsfunktion $\tilde{\rho}_{m_1m_2}(\tau)$ für $\tau = 0$.

3.3 Für welche Werte von η sind die Signale $m_1(t)$ und $m_2(t)$ im Symbolintervall orthogonal?

3.4 Bei Minimum Shift Keying gilt $\eta = \frac{1}{2}$. Zeigen Sie, dass sich $m_1(t)$ und $m_2(t)$ für diesen Fall um genau eine Halbwelle pro Abtastintervall unterscheiden.
Aufgabe 4: Minimum Shift Keying (MSK)

4.1 Zeigen Sie, ausgehend von der äquivalenten Tiefpass-Darstellung, dass sich MSK auch als Offset-QPSK (OQPSK) darstellen lässt. Als Vereinfachung soll angenommen werden, dass die Phase zum Zeitpunkt iT ein n-faches von π beträgt, d.h. $\varphi_T(tT) = n\pi, \quad n \in \mathbb{Z}$.

Im folgenden werde das MSK-Signal über einen AWGN-Kanal übertragen. Die Rauschleistungsichte betrage N_0.

4.2 Skizzieren Sie im äquivalenten TP-Bereich einen optimalen, linearen Demodulator, mit dem die komplexe Einhüllende demoduliert werden kann.

4.3 Geben Sie die Fehlerwahrscheinlichkeit für die Symbole $\hat{D}(k)$ an.
Aufgabe 5: Gaußsches Minimum Shift Keying (GMSK)

Für diese Aufgabe sei das Symbolintervall symmetrisch zu $t = 0$ angenommen.

5.1 Erläutern Sie die Unterschiede der in den Verfahren FSK, MSK sowie GMSK verwendeten Frequenz- und Phasenimpulse. Welcher Grundimpuls lässt sich bei linearer Darstellung für MSK bzw. GMSK angeben?

5.2 Skizzieren Sie einen GMSK-Modulator im äquivalenten Tiefpassbereich. Dabei sei ein Integrator sowie ein komplexer Phasenmodulator verwendet. Berechnen Sie ausgehend von dieser Struktur den Frequenzimpuls $s_{\phi}(t)$ für GMSK.

5.3 Im folgenden soll das GMSK-Signal inohärent mit einem Frequenzdemodulator demoduliert werden. Skizzieren sie den Demodulator.

5.4 Berechnen Sie den maximalen Phasenzuwachs bei GMSK am Ende des Intervalls $[-T/2, T/2]$. Die Phase $\varphi_T(-T/2)$ zum Intervall-Startzeitpunkt $t = -T/2$ wird vereinfachend zu 0 angenommen, d.h. $\varphi_T(-T/2) = 0$.
Aufgabe 6: Demodulation bei nichtlinearen Modulationsverfahren

Gegeben sei ein Übertragungssystem mit der Symboldauer T, bei dem ein nichtlineares Modulationsverfahren zum Einsatz kommt. Innerhalb des vorgegebenen Entscheidungsin- tervals der Länge $\Delta T = 2T$ treten im Sendesignal $m_T(t)$ im äquivalenten Tiefpassbereich in Abhängigkeit von den Sendesymbolen die folgenden zwei Signalformen auf (der Index T wird im Folgenden weggelassen):

\[
m_1(t) = 2 + j \quad \text{für} \quad -T \leq t < T
\]
\[
m_2(t) = \cos \left(\frac{\pi}{2T} t \right) + j \cdot \cos \left(\frac{\pi}{2T} t \right) \quad \text{für} \quad -T \leq t < T
\]

Für das Empfangssignal $u(t)$ hinter dem AWGN-Kanal mit Rauschen $n(t)$ ergibt sich $u_{1/2}(t) = m_{1/2}(t) + n(t)$.

6.1 Skizzieren Sie die beiden Signalformen $m_{1/2}(t)$, und berechnen Sie die Energien
\[
E_{m_{1/2}} := \int_{-T}^{T} |m_{1/2}(t)|^2 dt.
\]

6.2 Skizzieren Sie die Struktur eines kohärenten MMSE-Empfängers (siehe Vorlesung Abschnitt 2.5) für diesen Fall.

6.3 Berechnen Sie die Reaktionen am Ausgang der einzelnen Empfängerpfade des kohärenten Empfängers für $m_{1/2}(t)$ über die Korrelation.

6.4 Skizzieren Sie die Struktur eines inkohärenten Empfängers für diesen Fall.

6.5 Berechnen Sie die Reaktionen am Ausgang der einzelnen Empfängerpfade des inkohärenten Empfängers für $m_{1/2}(t)$.
Aufgabe 7: Empfängerstrukturen für DS-SSMA Signale

Gegeben sei ein Signal \(m_{\text{TR}}(t) = \sum_{k=-\infty}^{\infty} d_k s(t - kT) \) mit der spektralen Leistungsdichte \(\Phi_{m_{\text{TR}}m_{\text{TR}}} = A_s \) für \(-f_g \leq f \leq f_g\). Eine Spreizung des Signals erfolgt durch Verwendung des Grundimpulses \(p(t) = \sum_{l=0}^{N-1} c_l s_c(t - lT_c), c_l \in \{+1,-1\} \).

7.1 Motivation zur Verwendung von Spreizverfahren zu militärischen Zwecken war ein Informationsaustausch unterhalb des Rauschpegels, um selbst eine Detektion des Sendesignals zu verhindern. Um welchen Faktor \(N_C \) muss \(m_{\text{TR}}(t) \) gespreizt werden, um diese Anforderung bei einer spektralen Rauschleistungsdichte \(N_0 \) zu erfüllen?

7.2 Nach Übertragung über einen AWGN-Kanal mit Rauschen \(n_T(t) \) empfängt man das mit dem Spreizcode \(\{1, -1, 1, 1\} \) gespreizte Empfangssignal \(u_T(t) \) mit einem a) Matched Filter Empfänger b) Korrelator mit exakter Zeitsynchronisation. Zeichnen Sie die Empfänger und die Signale \(y_T(t) \) am jeweiligen Empfängerausgang, wenn nur das Symbol \(d_0 \) gesendet wird.

7.3 Zeigen Sie am Beispiel des Korrelators, welche Auswirkungen eine nicht-ideale Zeit-Synchronisation auf die Detektion hat?
Aufgabe 8: Der Rake-Empfänger

Das DS-SSMA-Signal

\[m_T(t) = \sum_{k=-\infty}^{\infty} d_k p(t - kT) = \sum_{k=-\infty}^{\infty} d_k \sum_{i=0}^{N_0-1} c_i s_c(t - kT - iT_c) \]

mit Sendesignalen \(d_k\) und Chips \(c_i\) mit \(d_k, c_i \in \{+1,-1\}\) wird über einen stationären Mehrwegekanal mit der Stoßantwort \(h_k(t) = a_1 \cdot \delta(t) + a_2 \cdot \delta(t - \tau)\) übertragen. Dabei gilt für die komplexen Pfadgewichte \(|a_2| > |a_1|\) und für die Verzögerung des zweiten Pfades \(\tau = 2T_c\). Im Folgenden wird die Übertragung eines einzelnen Symbols \(d_0\) angenommen. Das Signal soll durch einen Matched-Filter-Empfänger empfangen werden.

8.1 Skizzieren Sie die Kanalstoßantwort \(h_k(t)\).

8.2 Geben Sie das Signal \(w_T(t)\) am Eingang des Empfängers an.

8.3 Berechnen Sie die Stoßantwort \(h_E(t)\) des Matched Filters, und skizzieren Sie dessen Struktur.

8.4 Berechnen Sie das Signal \(y_T(t)\) am Ausgang des Matched Filters. Geben Sie den optimalen Abtastzeitpunkt \(t_a\) und den resultierenden Wert an.
Aufgabe 9: CDMA, m-Sequenzen und Gold-Codes

Durch CDMA (Code Division Multiple Access) können die Daten mehrerer Teilnehmer, die dasselbe Frequenzband zur Datenübertragung nutzen, am Empfänger wieder getrennt werden. In dieser Übung sollen Spreizcodes, die eine Teilnehmertrennung ermöglichen, untersucht werden.

9.1 Ein Sendedesignal werde um den Faktor N_c gespreizt. Wie groß muss die Zahl N_s der Teilnehmer sein, die mittels CDMA dasselbe Frequenzband zur Datenübertragung nutzen, um die spektrale Effizienz des Systems zu erhalten?

9.2 Es kann gezeigt werden, dass bestimmte Paare von m-Sequenzen p_1, p_2 gleicher Länge $l_m = 2^m - 1$ existieren, deren Kreuzkorrelierte $\tilde{\phi}_{p_1p_2}(\tau)$ nur drei verschiedene Werte aufweist (hier für ungerade m):

$$\frac{1}{T_c} \tilde{\phi}_{p_1p_2}(\tau) \in \{-1, -2^{(m+1)/2} - 1, 2^{(m+1)/2} - 1\}. \quad (1)$$

Dies ist bei einer Sequenzlänge von $l_m = 31$ der Fall für die Schieberegister-Rückkopplungen $i_r = 3, 5$ und $i_r = 1, 2, 3, 5$. Skizzieren Sie die AKF $\tilde{\phi}_{p_1p_1}(\tau)$ und beispielhaft die KKF $\tilde{\phi}_{p_2p_2}(\tau)$ dieses Codepaars.

9.3 Um aus dem Codepaar p_1, p_2 weitere Codes, sogenannte Gold-Codes, mit denselben günstigen Kreuzkorrelations-Eigenschaften abzuleiten, können die Codes unter sämtlichen Zeitversätzen nT_c modulo-2 addiert werden. Skizzieren Sie die Schieberegisteranordnung, und berechnen Sie exemplarisch den auf den Codes p_1, p_2 basierenden Gold-Code bei Addition ohne Zeitversatz, sowie den Gold-Code bei Addition mit dem Zeitversatz T_c.
Aufgabe 10: Grundlagen OFDM

Gegeben ist ein OFDM-System mit N Subträgern. Die OFDM-Symboldauer betrage T_0. Für das Sendesignal im ATP-Bereich kann für das 0-te Symbolintervall ($0 \leq t < T_0$) geschrieben werden:

$$m'_0(t) = s_0 \sum_{n=-L}^{L} d_{0,n} \cdot e^{i(m_0 t + \varphi_n)} \quad \text{mit} \quad \omega_s = \frac{2\pi}{T_0}$$

Im Rahmen dieser Aufgabe wird $s_0 = 1$ und $d_{0,n} = 1$ (für alle n) angenommen. Für N gilt: $N := 2L + 1$.

10.1 Berechnen Sie den Crestfaktor ξ von $m'_0(t)$ für N allgemein, wenn $\varphi_n = 0$ für alle n gilt.

Im Folgenden ist $\varphi_n \neq 0 \forall n$.

10.2 Überprüfen Sie, ob die einzelnen Subträger ein orthogonales Funktionensystem bilden.

10.3 Der Frequenzabstand zwischen zwei benachbarten Subträgern werde vergrößert und betrage nun $\omega_s = K \frac{2\pi}{T_0}$; $K \in \mathbb{N}$. Überprüfen Sie für diesen Fall, ob die einzelnen Subträger ein orthogonales Funktionensystem bilden.

10.4 Nun gelte für den Frequenzabstand zweier benachbarter Subträger:

$$\omega_s = \alpha \frac{2\pi}{T_0} \quad \text{mit} \quad 0 < \alpha < 1.$$

Ist das Funktionensystem orthogonal?

10.5 Im folgenden werde das OFDM-Signal um $\delta \omega_0$ frequenzverschoben. Für den Subträgerabstand gelte: $\omega_s = \frac{2\pi}{T_0}$. Überprüfen Sie für diesen Fall, ob die einzelnen Subträger ein orthogonales Funktionensystem bilden.

Kommentar: Insbesondere bei einer Differenz der Frequenz des Empfangsoszillators von der Frequenz ω_0 des Sendeoszillators kann es bei der Transformation vom Bandpassbereich in den äquivalenten Tiefpassbereich zu einer derartigen Frequenzverschiebung kommen.
Aufgabe 11: Empfang von rauschbehafteten OFDM-Signalen

Gegeben ist ein OFDM-Übertragungssystem mit N Subträger. Die OFDM-Symboldauer betrage $T = T_0 + T_a$ mit dem Nutzintervall T_0 und dem Schutzintervall T_a. Das Sende-
signal im ÄTP-Bereich lautet

$$m(t) = \sum_{k=-\infty}^{\infty} \sum_{n=-L}^{L} d_{k,n}s(t - kT)e^{j\omega_n(t-kT)},$$

mit dem Rechteck-Grundimpuls $s(t)$ der Dauer T und mit der Höhe s_0. Es sei $N = 2L+1$. $u(t) = m(t) + n(t)$ mit dem mittelwertfreien weißen Gaußschen Rauschterm $n(t)$ sei das Empfangssignal im ÄTP-Bereich und $u'(t)$ das Empfangssignal im ÄTP-Bereich nach Entfernung des Schutzintervalls:

$$u'(t) = \sum_{k=-\infty}^{\infty} \sum_{m=-L}^{L} d_{k,m}s'(t - kT_0)e^{j\omega_m(t-kT_0)} + n'(t).$$

$s'(t)$ sei der Rechteck-Grundimpuls der Dauer T_0 und $\omega_s = \frac{2\pi}{T_0}$.

11.1 Die Detektion des n-ten Subträgersymbols im n-ten Subkanal erfolgt durch Korrelation mit dem zugehörigen Referenzsignal $e^{j\omega_n t}$ (siehe Vorlesung, Abschnitt 4.2). Zeigen Sie, dass die Korrelation durch ein Matched Filter dargestellt werden kann.

11.2 Durch das Schutzintervall liegt eine Fehlanpassung des Matched Filters vor. Worin besteht diese Fehlanpassung? Wie verändert sich die Bitfehlerrate-Kurve qualitativ gegenüber der idealen Kurve?

11.3 Berechnen Sie die Varianz σ^2 des Rauschterms $n_{k,n}'$ für einen Subkanal nach dem Korrelationsempfang.
Aufgabe 12: Empfang von OFDM-Signalen bei Mehrwegeausbreitung

Gegeben ist ein OFDM-Übertragungssystem mit N Subträgern. Die OFDM-Symboldauer betrage $T = T_0 + T_G$ mit dem Nutzintervall T_0 und dem Schutzintervall T_G. Das Sendesignal im ATP-Bereich lautet

$$m(t) = \sum_{k=-\infty}^{\infty} \sum_{n=-L}^{L} d_{k,n} s(t - kT) e^{j2\pi n(t-kT)}$$

mit dem Rechteck-Grundimpuls $s(t)$ der Dauer T und mit der Höhe $s_0 = 1$. Es sei $N = 2L + 1$.

Der Übertragungskanal sei ein Zwei-Wege-Kanal $h(t) = \delta(t) + a\delta(t - \tau)$.

12.1 Berechnen Sie die Übertragungsfunktion $H(j\omega)$.

12.2 Berechnen Sie das Empfangssymbol $\tilde{\tilde{d}}_{0,n}$ vor Entzerrung und Entscheidung. Betrachten Sie dabei die beiden Fälle $\tau \leq T_G$ (Schutzintervall ausreichend lang) und $\tau > T_G$ (Schutzintervall zu kurz).

12.3 Welche Maßnahmen lassen sich ergreifen, wenn gilt $\tau > T_G$?
Aufgabe 13: Einführung Entzerrung

Gegeben ist das Modell eines Übertragungssystems im äquivalenten Tiefpassbereich (siehe Abb. 1) mit dem Rechteck-Grundimpuls $s(t) = 1$ für $0 \leq t < T$, 0 sonst, der Kanalimpulsantwort $h_K(t) = \delta(t) + \delta(t - \frac{T}{2})$, der Impulsantwort $h_E(t)$ des Matched Filters und der Impulsantwort $\{w_k\}$ des diskreten Whitening Filters.

Abbildung 1: Übertragungssystem im ÄTP-Bereich

13.1 Grundimpuls $s(t)$, Kanalimpulsantwort $h_K(t)$ und die kausale Impulsantwort $h_E(t)$ des Matched Filters lassen sich zu einer Gesamt-Kanalimpulsantwort $c(t)$ zusammenfassen. Skizzieren Sie $h_E(t)$ und $c(t)$.

13.2 Das gegebene Übertragungssystem lässt sich durch ein Symboltakt-Modell ersetzen (siehe Abb. 2). Berechnen Sie die z-Transformierte des Whitening Filters $\tilde{W}(z) = Z\{w_k\}$ in Abhängigkeit von $\tilde{H}(z) = Z\{h_k\}$ mit $h_k = h(kT)$.

Abbildung 2: Symboltakt-Modell des Übertragungssystems
Aufgabe 14: Der Viterbi-Algorithmus

![Diagram](image)

Abb. 1: Symboltakt-Modell des Übertragungssystems

Dabei ließ sich \(\{v_k\} \) in diesem Beispiel durch Kanalschätzung bestimmen zu

\[
\{v_k\} = \begin{cases} 3 & \text{für } k = 0 \\ 2 & \text{für } k = 1 \\ 0 & \text{sonst.} \end{cases}
\]

Die Empfangsfolge sei \(\{x_k\} = \{1.0, 4.8, 1.7, 2.1, 2.3, \ldots\} \) unter der Annahme eines binären Symbolalphabets \(\{0, 1\} \).

Ermitteln Sie unter Verwendung des Viterbi-Algorithmus die wahrscheinlichste Symbolfolge \(\{d_k\} \) für \(k = 1, 2, 3 \). Verwenden Sie als Metrik den euklidischen Abstand, und verdeutlichen Sie Ihr Vorgehen anhand von Trellis-Diagrammen.