Information-Centric Networking

6th GI/ITG KuVS Workshop on Future Internet

Leibniz Universität Hannover
2010-11-22

Dirk Kutscher – NEC Laboratories Europe
Hannu Flinck – Nokia Siemens Networks
Holger Karl – Universität Paderborn

EU-FP7 Project SAIL
Trends

• Imminent traffic volume explosion
 – Video distribution as (literally) a killer application
 – Resource management issues unsolved today

• Information-centric communication is applied to individual applications
 – CDNs: transparent redirection of requests to topologically close servers
 – P2P: location-agnostic exchange of content chunks
 – Machine-to-Machine Communication

• Information-centric research activities
 – 4WARD NetInf: Information-centric networking with a flat naming scheme
 – CCN: Content-centric networking with a hierarchical naming scheme
 – PSIRP: Publish/subscribe for Internet-level communication
 – DTN: Delay-Tolerant Networking based on Bundle protocol
Information-Centric Networking

Today’s Internet

Focus on nodes

Evolution

Web CDN P2P

Future Information-centric Network

Focus on information objects and real world objects

In today’s Internet, accessing information is the dominating use case!
Web-based Information Retrieval

Web caching infrastructure

DNS infrastructure

HTTP request

HTTP response

Web browser

Origin servers

IP forwarding infrastructure
Web-based Information Retrieval

Web caching infrastructure

Plus Inter-Cache Communication, CDN

DNS infrastructure

Plus DNSSec

IP forwarding infrastructure

Plus IP routing, ICMP, ARP, mapping to L2

Origin servers

HTTP request

HTTP response

Web browser
ICN-based Information Retrieval
Challenges for ICN

Naming of information objects

- Unique object identification
- Secure binding of names to objects and owners
- Names as keys for request/content routing
Challenges for ICN

Routing and Name Resolution

- Want to locate “best” copy of named objects
- Need a mapping/link between named objects and underlying network topology
- Want to support mobility and multi-homing
- Name-based forwarding: forward on names (based on corresponding routing protocol)
- Name resolution: resolve names to locators (leveraging underlying forwarding and routing infrastructure)
Challenges for ICN

Transport

- Reliable, congestion- and flow-controlled transport of objects from a given location to interested receiver
- Good support for caching, multi-path, disruption tolerance
- Options
 - Receiver-oriented transport
 - End-to-end vs. hop-by-hop

Original Content "XY1"
Owner "Joe"
Challenges for ICN

Security

- Host-based e2e security no longer applies
- Receiver is agnostic to object location
- Objects can be replicated, distributed without owner control
- Receiver (and network elements) MUST be able to
 - Validate name-content binding
 - Validate object integrity
 - Validate object-owner binding
Summary of Challenges

• Architectural / Technical
 – Naming: properties of a naming system for ICN
 – Routing / resolution: finding suitable object copies
 – Transport: moving information objects
 – Security: object/content security instead of connection security

• Operational / organizational
 – Resource and performance management
 – Federating network domains

• Economic
 – Role of operators
 – Changes in communication paradigms: receiver-orientedness
ICN Design Space

• Different approaches to ICN
 – With different implications for naming, routing, transport, security

• Name-based routing
 – Object names are used for forwarding decisions
 – Network is able to route and forward directly on names
 – Only next-hop names are resolved into lower-layer locators

• Name resolution and locator-based forwarding
 – Names are directly resolved to locators (of object caches)
 – Forwarding based on locators in the lower layer

• Plus hybrid variants of these approaches…
Name-based Routing

Overview
- Receivers send Interest Packets for named content to (selected) neighbor nodes
- Nodes have routing information to decide on next hop for Interest Packets
- Interest Packets reach a node with (a copy of) the named object
- Object (chunks) are (often) returned on the same path
- Nodes (often) have to maintain Interest tables

Web browser

OriginalContent "XY1"
Owner "Joe"
Name-based Routing

- Nodes need to know where to forward Interest Packets to.
- Requires a routing protocol that distributes information about where to find what named content.
- Scalability through aggregation of names (name prefixes).
- No resolution to end-to-end-relevant locators required.
Name-based Routing

Naming
- Fits well with hierarchical naming scheme
- E.g.:
 - com/example/video/a.mp4
 - com/example/audio/b.mp3
- Content providers register content name (prefixes)
- Requests for fully qualified names match aggregated prefix
- Names likely to have some topological relevance
Name-based Routing

Transport
- Different from e2e TCP
- In overlay approach: hop-by-hop transport could be employed
- For L3 approach: receiver-oriented transport is good candidate
 - Receiver requests packets over one or multiple interfaces
 - Requests are answered by intermediate nodes (caches) or origin node
 - Receivers control flow and other transport functions
Protocol Stacks in Name-based Routing ICN

Internet Hour Glass

- SMTP, HTTP, RTSP, SIP
- TCP, UDP, RTP
- IP
- Ethernet, WLAN
- Copper, Fiber, Radio

Name-Based Routing ICN

- Object / Stream Delivery
- Security
- Named Content Chunks
- IP, UDP, P2P
- Copper, Fiber, Radio
Naming Stacks in Name-based Routing ICN

Internet Naming

- Search
- URIs
- DNS Names
- IP Addr.
- MAC-Addr. etc.

Naming in Name-Based Routing

- Search
- Persistent names
- Object (chunk) names
- IP Addr., UDP endpoint addr.
 MAC-Addr. etc.
Name-based Routing Issues

• Forwarding state in routers
 – Often, routers have to maintain interest state
 – Could do without, but with some in-efficiency

• Agility with respect to topology changes
 – When names are tied to network/organizational topologies, mobility of sources becomes costly
 – Names will change
 • For instance: source moves from net/isp1 to net/isp2
 – Can also lead to routing state explosion (depending on employed routing system)

Can be addressed by another naming layer and a name resolution service
Name Resolution-based ICN

• Layer of indirection – resolving names to
 – Other names
 – Locators
 – Rendezvous points

• Names: persistent information identifiers
 – Independent of network topology, copy locations etc.
 – Identifiers that are used by applications, receivers, content owners
 – But not necessarily by the network
Name Resolution-Based ICN

[Diagram showing a network flow with name resolution and forwarding layers.]

Name resolution layer:
- Resolve XY1
- XY1 => [a.b.c.d]

Forwarding layer:
- Web browser
- Content “XY1” at [a.b.c.d]
- Owner “Joe”

Get XY1

XY1 => [a.b.c.d]
Name Resolution-Based ICN

Name resolution layer

```
| a.b  |
|      |
| GET XY1 |
| a.c  |
|      |
| a.b.c |
```

Forwarding layer

```
| Content “XY1” at [a.b.c.d] |
| a.b.c.d |
| a.b.b |
| a.c.b |
| a.b.c |
```

Web browser

```
Get XY1
```

Owner “Joe”

```
XY1 from [a.b.c.d]
```

Plus topology-based routing

2010-11-24 24
Overview

- Users request content by name
- Name is resolved to a locator (either by receiver or “in the network”)
- Name resolution system has a mapping of [name => locator]
- Receiver retrieves object from given node
- Forwarding layer employs independent routing system

Name Resolution-Based ICN

Name resolution layer

- Get XY1
- Resolve XY1
- XY1 => [a.b.c.d]

Forwarding layer

- Web browser
- Content "XY1" at [a.b.c.d]
- Owner "Joe"
- XY1 from [a.b.c.d]

Plus topology-based routing
Name Resolution-Based ICN

- **Name resolution layer**
 - Resolve XY1
 - XY1=>[a.b.c.d]
- **Forwarding layer**
 - GET XY1 from [a.b.c.d]
 - XY1 from [a.b.c.d]
 - Content “XY1” at [a.b.c.d]

Routing
- Request routing can be part of resolution (DHT)
- Resolution can be multi-step (DNS, multiple DHTs)
- Actual routing takes place on forwarding layer

Plus topology-based routing
Name Resolution-Based ICN

Names
- Information object names are not tied to topology
- Can be persistent
- Do not need to be aggregate-able (depending on resolution system)
- Can provide additional functions such as secure naming

Web browser

Get XY1

Resolve XY1

XY1=>[a.b.c.d]

Resolve XY1

XY1=>[a.b.c.d]

Forwarding layer

GET XY1 from [a.b.c.d]

XY1 from [a.b.c.d]

Name resolution layer

Resolves XY1

XY1=>[a.b.c.d]

Plus topology-based routing
NetInf Naming Scheme Overview 1

- Information Object (IO) = (ID, Data, Metadata)
- Each IO has an *owner*
- All equivalent copies have the same ID
 - This might include different versions

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>A=Hash(PK_{IO})</th>
<th>L={attributes}</th>
</tr>
</thead>
</table>

- Security Metadata
- Data
- SK_{IO}
Naming Stacks

Internet Naming

Name-Based Routing Naming

Name Resolution-Based Naming

Search

URIs
DNS Names
IP Add.
MAC-Addr. etc.

Persistent names
Object (chunk) names
IP Addr., UDP endpoint addr. MAC-Addr. etc.

Application-specific names
Object names
Topological Names
IP Addr., UDP endpoint addr. MAC-Addr. etc.
Name Resolution-Based ICN

- Name resolution layer
 - Get XY1
 - Resolve XY1
 - XY1 => [a.b.c.d]

- Forwarding layer
 - GET XY1 from [a.b.c.d]
 - XY1 from [a.b.c.d]
 - a.b
 - a.c
 - a.c.b
 - a.b.b

- Transport
 - Can be e2e transport between receiver and located node
 - Support of caching not straight-forward

- SCALABLE & ADAPTIVE INTERNET SOLUTIONS

- Web browser
- Owner “Joe”

Plus topology-based routing
Name Resolution-Based ICN Issues

• Two-step approach
 – Explicit resolution step required

• Separating data transport from requests
 – On-path caching not straightforward

• Scalability and performance of resolution system
 – Resolution system has to be able to resolve all object names
 – Different possible implementations
Options For Way Forward

Name-based routing and Name resolution layer

GET XY1

Options For Way Forward

GET XY1

Resolve XY1

GET XY1 from Y/B/A

GET XY1 from [1.2.2.1]

SCALABLE & ADAPTIVE INTERNET SOLUTIONS
Options For Way Forward

Name-based routing and Name resolution layer

Get XY1

Web browser

Owner "Joe"

Domain X

Domain Y

Content "XY1" at [1.2.2.1] in Domain Y

GET XY1

Resolve XY1

GET XY1 from Y/B/A

GET XY1 from [1.2.2.1]
Options For Way Forward

Hybrid Name-Based Routing & Resolution
- Object names without topological relevance
- Global topology layer
- Local domains with independent topology address space
- Objects may not be resolvable in all domains => defer resolution (late binding)
- Allow for shortest path routing and direct transport where possible
- Allow for connecting incompatible addressing domains
- Allow for non-permanently connected domains (Delay-Tolerant Networking)
ICN Hour Glass Waist

- Application-specific
 - Application-specific names
- Core ICN Elements
 - Object names
 - Topological Names
- Network-specific
 - IP Addr., UDP endpoint addr., MAC-Addr. etc.

Domain-specific
- Domain-local implementation of resolution systems
- Domain-local routing and forwarding
Conclusions

- Information-Centric Networking: Different possible approaches
 - Name-Based Routing
 - Resolution-Based
 - (and hybrids)

- Need to understand implications and trade-offs
 - Scalability of Naming Resolution and Routing Systems
 - Effects of mobility

- SAIL Approach
 - ICN enabling interworking between different networking and addressing/naming domains: IPv4, IPv6, DTN
 - Persistent and secure naming as core concept

- Some interesting questions
 - Application-specific (human-friendly) names?
 - URIs and WWW hyperlinks?
 - Services and dynamic object in a Network of Information