
LE I B N I Z UN I V E R S I T Ä T HA N N O V E R
FA K U LT Ä T F Ü R E L E K T R O T E C H N I K U N D I N F O R M AT I K

I N S T I T U T F Ü R K O M M U N I K AT I O N S T E C H N I K

Machine Learning Implementation on the Client-Side
for Adaptive Video Streaming

Master Thesis

eingereicht von

B E S H E R K A R K O U R

am 26. Dec 2019

Erstprüfer : Prof. Dr.-Ing. Markus Fidler

Zweitprüfer : Prof. Dr.-Ing. Jürgen Peissig

Betreuer : M.sc. Tilak Varisetty

Besher Karkour: Machine Learning Implementation on the Client-Side for Adap-
tive Video Streaming, Master Thesis, © 26. Dec 2019

E H R E N W Ö RT L I C H E E R K L Ä R U N G

Hiermit versichere ich, die vorliegende Master Thesis ohne Hilfe Dritter und
nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben.
Alle Stellen, die wörtlich oder inhaltlich aus den Quellen entnommen
wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Hannover, den 26. Dec 2019

Besher Karkour

TA B L E O F C O N T E N T S

i technical background 1

1 intordution 3

1.1 Real Time interactive free-viewpoint Video 3

1.2 Artificial Intelligence . 3

1.3 Motivation . 4

1.4 Research Question . 4

1.5 Contribution . 5

1.6 Structure Of The Work . 5

2 streaming and encoding 7

2.1 HTTP Streaming . 7

2.2 Adaptive Bitrate Streaming . 7

2.3 Video Encoding . 8

2.4 Constant Bitrate (CBR) And Variable Bitrate (VBR) 8

2.5 Video Bitrate And Resolution Relationship 9

3 neural network 11

3.1 Introduction . 11

3.2 Types Of Learning . 12

3.3 The Neural Network Parameters And Hyperparameters . . . 13

3.4 Activation Functions . 13

3.4.1 Sigmoid . 13

3.4.2 Tanh . 14

3.4.3 SELU . 14

3.5 Loss Function . 16

3.6 Optimizers . 16

3.7 Epochs . 16

3.8 TensorFlow.js . 16

4 related works 19

5 experiment setup 23

5.1 Network Topology . 23

5.2 Server/Client-Structure . 23

5.2.1 The Server . 24

5.2.2 The Client . 25

ii implementation 27

6 collecting video and network statistics 29

6.1 Indexed Webpage . 29

6.2 Received Bitrate And FPS . 29

6.3 RTT . 30

6.3.1 Measurement Accuracy 31

6.4 JITTER . 33

6.5 Smoothing Function . 33

7 neural network 35

v

vi table of contents

7.1 Creating The Network Model 35

7.2 Network Architecture . 35

7.3 Collecting The Training Data 36

7.4 Training The Model . 36

7.5 Saving The Trained Model . 38

7.6 Network Profile and Neural Network Output 38

8 conclusion 43

iii appendix 45

a code 47

literaturverzeichnis 59

F I G U R E S

Abbildung 2.1 HTTP Streaming . 7

Abbildung 2.2 Multi Bitrate Encoder 8

Abbildung 3.1 Neural Network . 11

Abbildung 3.2 Neural Weights . 12

Abbildung 3.3 Sigmoid Function . 14

Abbildung 3.4 Tanh Function . 15

Abbildung 3.5 SELU Function . 15

Abbildung 3.6 Tensorflow Training Model [8] 17

Abbildung 4.1 Producer-Consumer Model for HTTP Streaming [24] 19

Abbildung 4.2 Applying reinforcement learning to bitrate adaptati-
on. [15] . 21

Abbildung 4.3 Encoding delay comparison between NSS and DASH.
[20] . 22

Abbildung 5.1 The Network Topology 23

Abbildung 5.2 Server Client Overview 24

Abbildung 6.1 Starting Webpage . 29

Abbildung 6.2 Calculating RTT . 30

Abbildung 6.3 RTT Error . 31

Abbildung 6.4 RTT FlowChart . 32

Abbildung 6.5 Non-symetric Smoothing 34

Abbildung 7.1 Network Architecture 35

Abbildung 7.2 Loss Function Output with learining rate (0,001) . . . 37

Abbildung 7.3 Loss Function Output with learning rate (0,1) 37

Abbildung 7.4 Loss Function Output with using sgd optimizer) . . . 38

Abbildung 7.5 Storing The Trained Model 39

Abbildung 7.6 Neural Network Output, PLR = 0.5% 40

Abbildung 7.7 Neural Network Output, PLR = 1% 41

vii

TA B L E S

Tabelle 2.1 Bitrate Resolution Values [7] 9

Tabelle 5.1 Server Software components 24

Tabelle 5.2 Client Software components 25

Tabelle 7.1 Network Bandwidth . 40

ix

A C R O N Y M S

ABR Adaptive Bitrate

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

CBR Constant Bitrate

CDN Content Delivery Network

CPU Central Processing Unit

DASH Dynamic Adaptive Streaming over HTTP

FPS Frames Per Second

FVV Free-Viewpoint Video

GPU Graphics Processing Unit

HLS HTTP Live Streaming

HS HTTP Streaming

ML Machine Learning

MSD Media Segment Duration

NSS Non-Segmented Streaming

PLR Packet Loss Rate

QoE Quality of Experience

RTT Round-Trip Time

SELU The Scaled Exponential Linear Unit

SFT Segment Fetch Time

SGD Stochastic Gradient Descent

SSH Secure Shell

TCP Transmission Control Protocol

VBR Variable Bitrate

WebGL Web Graphics Library

xi

Teil I

T E C H N I C A L B A C K G R O U N D

1
I N T O R D U T I O N

The demand for streaming multimedia is growing rapidly where 92% of
internet users watch videos online in 2019 [19] with video traffic being the
majority traffic on the internet. Since HTML5 introduced HTML Streaming
it made playing videos in the browser much easier by removing the need
for any additional plugins [23].
HTML5 makes it easy for web developers too and implementing video
player to there webpages becomes as easy as adding any other HTML
elements like texts or images.

At the same time, more users are joining the Internet every day. Those
users have a wide variety of devices that makes video streaming more ac-
cessible. Most notably are PCs, smart televisions and cell phones. Especially
the cell phone uses different generations of connections technology, which
brings to attention the different data rates that users can obtain including
WiFi, cable, DSL, and fiber to the home.

1.1 real time interactive free-viewpoint video

This work based on Free-Viewpoint Video (FVV) implemented by [20],
which allows the user to interact with a video stream by changing the
mouse position. This means the video content is directly controlled by the
viewer.
The rendering application in the server uses open source software and
open standards like FFmpeg to encode the video stream and libwebsockets,
which is a lightweight C WebSocket and it is used to receive the mouse
position from the client.
This application is suitable for many cases for e.g. sports or live events.
Client-side rendering sends the data from all cameras to the client in real
time. This will add a high volume of load to the network. To avoid that
we use the server-side rendering, where the server receives the user input
using a websocket and only generates the necessary frames.

1.2 artificial intelligence

In recent years the Artificial Intelligence (AI) has become an important part
of computer science.
It has been introduced in many fields like: medical diagnosis, weather pre-
diction, speech, Image recognition, financial industry and trading. Despite
the great computing power of modern computers there are many tasks in
which people are superior to computers. One of the strengths of human in-
telligence is the ability to adapt and learn, which a computer does not have

3

4 intordution

to large extent [5]. AI techniques should therefore generally help computers
to acquire natural intelligence skills.
In this work, we take advantage of a relatively new javascript framework
called Tensorflow.js to apply some intelligence on the Adaptive Bitrate (ABR)
algorithm.
In addition, the modern browser introduced Web Graphics Library (WebGL)
which is a browser interface to OpenGL to enable the execution of JavaScript
code on a computer’s Graphics Processing Unit (GPU) [17], that will solve
the speed problem when Machine Learning (ML) is applied on the browser.

1.3 motivation

Before ABR was conceived there, were two ways you can go about streaming
videos, you could either store the videos in full resolution and risk the
users with poor connectivity having an abysmal streaming experience, or
you could reduce the quality and resolution of the video, which effect the
Quality of Experience (QoE), but now ABR is used to provide better quality
(i.e bitrate) possible based on client connection capabilities.

Modern browsers provide many useful Application Programming Inter-
face (API)s which can give us some information about the internet connecti-
on performance on the client-side and let us estimate the bandwidth and
the latency of the network. Other APIs can provide information about the
hosting device hardware because the video decoder algorithms in the video
player require a lot of Central Processing Unit (CPU) resources and a higher
bitrate requires more hardware resources. These data can be used in the
ABR algorithms.

Many recent applications require video streaming with a small delay like
FVV videos or video calls. To provide a good user experience the client-side
buffer size should be as small as possible. This will increase the challenges
since the buffer is one of the most important factors in ABR algorithms
like Dynamic Adaptive Streaming over HTTP (DASH). The buffer prevents
stuttering in playback during the network throughput fluctuation but with
the small buffer size, the buffer will be quickly underflowed.

1.4 research question

Most ABR algorithms depend on segmented media streaming, which allow
them to estimate the network bandwidth by measuring the download time
for each segment.
For interactive FVV rendering the segmented streaming adds a large enco-
ding delay as it takes at least one sec to create the next segment [21].
Using Non-Segmented Streaming (NSS) will effectively reduce the delay
between the client and the server, but also the bandwidth estimation using
the downloaded segments will no longer be available. We replace the

1.5 contribution 5

bandwidth estimation with Round-Trip Time Round-Trip Time (RTT) measu-
rement and video statistics to use them as indicators to our ABR algorithm
using ML.
The research questions we evaluate in the thesis are:

• How accurate the RTT measurement in the browser?

• How the RTT changes influences the network bandwidth and even-
tually the targeted bitrate?

• How can the ML techniques applied to estimated ABR algorithm to
achieve the target bitrate for a particular network profile?

• Which model parameter performs better in term of accuracy and
training time?

1.5 contribution

Reviewing the network delay in terms of RTT in the browser using javascript
and applying the measurement to ABR algorithm, which is an important
parameter for low latency applications like interactive FVV. Introducing
a non-symmetric smoothing function to filter the measurement from the
network fluctuation. Implementing ML on the browser without any additio-
nal software or plugins using Tensorflow.js. Choosing the right Artificial
Neural Network (ANN) model and the training method which serves our
task. Testing with the network profile, how the RTT and packet loss rate can
be used to find the optimal bitrate from the trained model.

1.6 structure of the work

The document is structured in eight chapters, starting with an introduction
that gives an overview of the thesis in chapter 1.
Chapter 2 discusses the basic concepts of video streaming and encoding.
Chapter 3 gives an introduction about machine learning and neural net-
works.
Chapter 4 discusses the related works, which cover the ABR algorithms.
Chapter 5 talks about the experiment setup and the used softwares.
Chapter 6 shows the collection and the measuring processes of network
and video statistics, which will be the input data for the ANN.
Chapter 7 introduces the building and the training processes of the neural
network and the evaluation results.
The final chapter 8 concludes the thesis with a brief summary of the work
done.

2
S T R E A M I N G A N D E N C O D I N G

2.1 http streaming

HTTP Streaming (HS) takes advantage of a conventional web server and
uses it as a simple file server to stream media files, delivering small parts of
the file which is called segments.
The files are usually stored in different qualities on the server for ABR. The
client sends a HTTP request to the server, the server can reply with a single
HTTP connection that remains open until the client closes it as shown in
Fig.2.1. The response has a part of the total video which will be received
and processed on-the-fly by the client.

Fig. 2.1: HTTP Streaming

To guarantee there is no loss in transmitted data, HS uses Transmission
Control Protocol (TCP) to bypass the firewall on the host machine [21]. But
this will make the data transmission time longer especially if there are
packet losses on the network, then the client must wait for the missing
data to be detected and re-transmitted by the server. To overcome these
problems, clients apply data buffering before playing the media [22].

2.2 adaptive bitrate streaming

Because HS is segmenting media into a series of small segments this which
allows ABR to be implemented. These segments will be encoded in the
server in multiple bit rates and resolutions as shown in Fig.2.2.
Depending on the network conditions on the client’s side, there are algo-
rithms like DASH that makes changes to the requested quality of the video
to achieve a streaming experience with less buffering.

7

8 streaming and encoding

Some of the parameter that can be adjusted with ABR are: screen size, CPU
capacity, and client’s buffer. Further information on these algorithms are
found in chapter 4.

Fig. 2.2: Multi Bitrate Encoder

Some of the commercial technologies benefit from HS to (delivering ABR

streaming ,are HTTP Live Streaming (HLS) developed by Apple and MPEG’s
standardized DASH.

2.3 video encoding

without the video encoder, the size of raw video files will be very big and
it will not be practical to store it or transfer it through the internet. The
main task of the encoder is to compress the video files into smaller sizes,
the encoder uses different techniques [1] as:

• Image resizing: this will reduce the pixels needed for each frame but
also reduces the details of the image. there is a direct relationship
between the resolution(frame size) and the bitrate discussed more in
section 2.5

• Interframe: in short the encoder will look at the differences between
two frames. If the pixel didn’t change its value between the two frames,
it becomes redundant and it will be removed from the second frame.
This will reduce the data size without reducing video quality. But the
videos with higher motion will need more data to encode, which is
strongly related to Variable Bitrate (VBR) (discussed in section 2.4).
This method uses three types of frames, at first it needs a full-frame
called keyframe, the next frame will encode the difference called a
predictive frame. the third is bi-directional predictive frame, it can
look backwards and forwards for other delta frames.

• Chroma subsampling: is done by reducing the color information of
the video.

2.4 constant bitrate (cbr) and variable bitrate (vbr)

Constant Bitrate (CBR) encodes the data in the same bitrate regardless of the
content of the data. The client will receive a constant bitrate from the server
so it will be easier to estimate the network bandwidth on the client’s side.

2.5 video bitrate and resolution relationship 9

In VBR the bitrate is changed depending on the detail demand of the frame
sequence in the segment. This introduces additional challenges including
the complex encoding pipelines for VBR. It requires more storage, and
transport challenges because of the multi-time scale bitrate burstiness of
VBR videos [18]. For ABR applications the Constrained VBR is usually used,
which is VBR constrained to a maximum about 110% of the targeted data
rate [12].

2.5 video bitrate and resolution relationship

The high video resolution needs a high bitrate and vice versa. To achieve a
reasonable video quality for different resolutions the following values are
recommended [7]:

Frame Size/Frame Rate Target Bitrate (kbps) Min Bitrate (50%) Max Bitrate (145%)

320x240p @ 24,25,30 150 75 218

640x360p @ 24,25,30 276 138 400

1280x720p @ 24,25,30 1024 512 1485

1920x1080p @ 24,25,30 1800 900 2610

1920x1080p @ 50,60 3000 1500 4350

2560x1440p @ 24,25,30 6000 3000 8700

2560x1440p @ 50,60 9000 4500 13050

3840x2160p @ 24,25,30 12000 6000 17400

3840x2160p @ 50,60 18000 9000 26100

Table 2.1: Bitrate Resolution Values [7]

Another method to determine an average bitrate is the Kush Gauge [13]:

bitrate = pixelcount ∗ framerate ∗ fm ∗ 0.07 (2.1)

Where fm is the ’motion factor’ that defines the estimated motion of the
video on a scale from 1 to 4, and:

pixelcount = videohight ∗ videowidth ∗ framerate (2.2)

3
N E U R A L N E T W O R K

3.1 introduction

Inspired by the nervous system, the neural network is a method of building
computer programs that are able to learn and adapt to the given data on
its own, much like the nervous system, the neural network consists of
connected (neurons) that are placed in three kinds of layers: input layers,
output layers and hidden layers as shown in Fig.3.1, there can be more than
one hidden layer in the same program.

Every connection between two neurons has a specific weight that gets
multiplied by the input value which controls the importance of this connec-
tion. (Fig.3.2)

Fig. 3.1: Neural Network

Neural networks need training data to be able to predict the intended
outcome, input data need to pass through all the neurons with each neuron

11

12 neural network

making its calculation and sending it to all the neurons in the next layer.
After the data passes through all the layers and every neuron has applied its
transformation, a label prediction will be reached for those input examples
in the final layer.

Fig. 3.2: Neural Weights

3.2 types of learning

The ML learning algorithms can be classified into a variety of types, the
most used ones are [2]:

• Supervised Learning: needs a data set which has input variables and
output labels and it tries to learn the mapping function from the
input to the output. The neural network determines the error and
then adjusts the network parameters to minimize it.

• Unsupervised Learning: doesn’t need a data set to teach itself. It’s
used when the labeled examples are not available. It learns by using a
reward/punish system to refer to the preferable outcome, and the goal
is not to produce a classification but to make decisions that maximize

3.3 the neural network parameters and hyperparameters 13

rewards.
Unsupervised learning algorithms are usually used to extract statisti-
cal patterns from data samples [6].

• Reinforcement Learning: the model’s output interacts with its environ-
ment. Those outputs (actions) affect the environment and the result
will be fed again into the network input to adjust the learning process.

In a supervised learning environment, predictions are processed by a
(loss function) to measure the results of the outcome in relation to the
correct answer to differentiate between good and bad answers. The is key
to eliminating the bad prediction by gradually changing the weights of the
interconnections between neurons, and to minimize the errors and making
loss function output as close as possible to zero. This is done with the help
of optimizer algorithms which changes the weights in small values through
multiple generations of data sets that we pass through the network in each
epoch.
If there’s no divergence between the estimated and the expected value then
our loss function will be zero.

3.3 the neural network parameters and hyperparameters

The model parameters are internal variables that can be calculated by the
network model from the given data i.e. the basis and the weights between
neurons.
The model hyperparameters are external variables which the network model
has no permission to change and cannot be estimated from the data, those
are set by the programmer to adjust the learning algorithms and must be set
while building the model’s structure and before any training sessions. For
example the optimizer, loss function, the number of layers, the number of
neurons in each layer and their activation functions. Those parameters affect
the speed and quality of the learning process which is largely connected to
the programmer’s experience.

3.4 activation functions

To produce a non-linear output an activation function must be introduced
which allows for a more flexible and variant functions to be created during
the learning session, which increases the speed of the learning process.
The output of each neuron will be influenced by the activation function
before reaching the neuron in the next layer. The most popular activation
functions are:

3.4.1 Sigmoid

Sigmoid function will rearrange the input values of the function to values
between 0 and 1 without losing any information in the data. This is very

14 neural network

helpful when dealing with variables that have vast ranges. It is defined by
the formula [9]:

S(x) =
1

1+ e−x
=

ex

ex + 1
(3.1)

Fig. 3.3: Sigmoid Function

3.4.2 Tanh

Some neural networks works better with input ranges between -1 and 1,
those networks can take advantage of the tanh function which represents
the relationship between the hyperbolic sine and hyperbolic cosine:

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
(3.2)

3.4.3 SELU

The Scaled Exponential Linear Unit (SELU) activation function definition is
[8]:

SELU(x) = λ

{
α(ex − 1) for x < 0

x for x > 0
(3.3)

Where α and λ are pre-defined constants (α = 1.67326324 and λ =
1.05070098).
For large negative values, the SELU function will be saturated so that they
are essentially inactive. It is linear for all positive values and has a small
slope for negative values (Fig.3.5).

3.4 activation functions 15

Fig. 3.4: Tanh Function

Fig. 3.5: SELU Function

16 neural network

3.5 loss function

The value of the loss function is our indicator for the progress of the learning
process, basically it’s how far we are from the ideal solution, or it’s the
difference between the predicted value and the correct value.
Some of the advanced loss functions are [8]:

• MeanSquaredError: Computes the mean of squares of errors between
the targeted outputs (labels) and predictions.

• MeanAbsoluteError: Computes the mean of absolute difference bet-
ween labels and predictions

• LogCosh: Computes the logarithm of the hyperbolic cosine of the
prediction error.

3.6 optimizers

Optimizers are the functions that changes the network model by modifying
the weights and basis according to the output of the loss function to make
sure that the optimizers are working in the intended direction which is
minimizing the value of the loss function with each epoch. Some important
optimizer algorithms are: Stochastic Gradient Descent (SGD),Momentum
,RMSprop, Adagrad, Adadelta, and Adam

3.7 epochs

Each time all the training data have passed through the neural network is
called an epoch or a generation, higher number of epochs means more time
spent in the learning process.

3.8 tensorflow.js

It’s a javascript library, with it we can build and train ML models which
live entirely in the browser. This has a lot of benefits, for example the user
doesn’t need to install any libraries, softwares or drivers to run ML, all what
the user needs to do is to open the webpage.

The code will basically run over all devices no matter if it’s a PC, laptop,
tablet or smartphone. Additionally the most modern browsers support GPU

acceleration, which will improve the runtime by allowing the ML calculations
to run in GPU.
TensorFlow can be used in different programming languages and the trained
model in one language can be imported and run in the other language
(Fig.3.6)

3.8 tensorflow.js 17

Fig. 3.6: Tensorflow Training Model [8]

4
R E L AT E D W O R K S

The ABR-Algorithms for HS in the related works depends on estimating the
connection bandwidth.
Estimating the bandwidth is not so easy because HS runs in Application
Layer and because of strict boundaries between layers of the OSI com-
munication model, the HS can only see the bandwidth that TCP provides
[24].

More familiar ways to estimate the bandwidth in the browser is to down-
load a large file and measure the time of the download. This method will
add unnecessary load to our application.
Since the video player is already downloading the video chunks, we can
passively measure the download time for each chunk, and estimate the
bandwidth with it. The data delivering rate for the video player will denote
the network bandwidth.

Fig. 4.1: Producer-Consumer Model for HTTP Streaming [24]

Zhou et al. in Paper [24] assumes the scenario shown in Fig.4.1, where
Tc is the time in current periodi , the next periodi+1 is from Ts to Te and
{T1, ..., Tn} are time samples between Ts and Te, B(t) is the network estimated
bandwidth, and the bitrate for the next segment Ri+1 should achieve the
following condition:

∫ t

Ts

Ri+1dt 6
∫ t

Tc

B(t)(dt),∀t ∈ {T1, . . . , Tn} (4.1)

19

20 related works

the selected bitrate for the next segment based on bandwidth history will
be represented by the following equation:

Ri+1 = min{
BWE(Tc, t)

t − Ts
, ∀t ∈ {T1, . . . , Tn}} (4.2)

Where BWE(Tc,t) denotes
∫t

Tc
B(t)(dt) And is calculated as the minimal

amount of data that the client side downloaded during an interval with the
same length (t-Tc).

Another adaptation method delivered in [14] looks at the ratio of the
Media Segment Duration (MSD) to Segment Fetch Time (SFT).

µ =
MSD

SFT
(4.3)

A higher bitrate will be selected if µ is bigger than 1+ ε. Where ε is the
bitrate switch up factor. If µ is smaller than an empirical value rd, a lower
bitrate will be selected.
In other words, the fetching time of the segment should be smaller than its
playback duration. And the algorithm chooses the upper limit of the next
segment bitrate.

In paper [3] the screen size that runs the video player has been considered
in the ABR algorithm.
It prevents sending any unnecessary pixels to the video player if the screen
size is too small to view all the pixels reducing the consumption of network
bandwidth on the account of unnecessary data, delivering the same video
quality to the customer more efficiently.
This way the ABR algorithm will choose the bitrate ri is based on two
conditions:
If the screen size Vi equals the resolution i and the estimated bandwidth
Rt is bigger than its bitrate. If the screen size Vi larger than the resolution i
but the Rt is smaller than the higher resolution. The probability of selected
representation i is [3]:

p(i; r) = P(Vt = vi, Rt > ri) + P(Vt > vi, ri+1 > Rt > ri) (4.4)

The values of bandwidth and screen size are independent from each
other and (4.4) can be written as:

p(i; r) = P(Vt = vi)P(Rt > ri) + P(Vt > vi)P(ri+1 > Rt > ri) (4.5)

R(r) =
∑
i∈I

rip(i; r) (4.6)

related works 21

Substituting (4.5) into (4.6):

R(r) =
∑
i∈I

ri(P (Vt = vi)P (Rt > ri) + P (Vt > vi)P (ri+1 > Rt > ri))

(4.7)

Where I is a set of encoded representations R(r) and the average bitrate.

The author in Paper [15] uses a software called pensieve to build and
train a neural network.
ABR algorithm was generated using reinforcement learning so there is no
need for training data. The ANN will interact with the environment and the
reward input is the video playback statistics (Fig.4.2).

Fig. 4.2: Applying reinforcement learning to bitrate adaptation. [15]

Pensieve is installed on the server. That means the client sends always
the video statistics to the server, which increase the network traffic.
In addition reinforcement learning need to interact with the environment
to collect the data needed for the training [2], that leads to longer training
time.

In paper [20] a ABR algorithm is implemented on a free view-piont video
using NSS. The client sends the targeted bitrate to the streaming server using
a websocket connection. A passive estimation for available bandwidth is
measured using the video playback statistics on the client.

Algorithm 1 Signalling of Bit Rate Switch

Require: br, b̂, β

1: if b̂ 6 β.br then
2: WebSocket Signal (0, b̂)

3: else if b̂ > br
β then

4: WebSocket Signal (1, b̂)
5: end if

22 related works

The algorithm switches to a higher or lower bitrate with help from a
threshold parameter β which has a default value β = 0.8
b̂ is the estimated bitrate and br is the desired bitrate.
The paper also compares the NSS encoding delay with segmented stream
like DASH, the latter needs at least 1 second to encode one segment and
received by the client (Fig.4.3).

Fig. 4.3: Encoding delay comparison between NSS and DASH. [20]

To the best of our knowledge, there exist no work on the FVV streaming
using the ML to find the targeted bitrate.

5
E X P E R I M E N T S E T U P

5.1 network topology

The network is built with Emulab, which is a network testbed for researchers
to help them in developing, debugging, and evaluating their systems [4].

The network is using dumbbell topology, which contains to group of PC’s
connected with two routers as shown in Fig.5.1. The first group contains
two PC’s, one of them is the video streaming server.
The second group contains the Client’s PC’s. All previous PC’s run under
ubuntu.
All connections between the PC’s and the routers are set to 100 MBits.

Fig. 5.1: The Network Topology

Additional PC worked as delay node is used to control the network traffic.
It is located between the routers, and it’s running under FreeBSD operating
system [11].
IPFW is a stateful firewall which is included in the basic FreeBSD. The
network latency and the network loss rate are controlled by IPFW. All PC’s
can be accessible through Secure Shell (SSH) connection.

5.2 server/client-structure

The client communicates with the server through the following:

23

24 experiment setup

• HTTP Requests: to load the webpage. Therefore we need to install a
webserver lighttpd. The video will be also streamed over HTTP/TCP.

• Websocket: to send the mouse coordinates to the render. The render
uses (libwebsockets) library to be able to receive data from the client.

Fig. 5.2: Server Client Overview

5.2.1 The Server

The server-side, runs rendering application to achieve an interactive FVV

[21] which receives the mouse coordinates from the client and generates 3D
images. The images will be saved in a pipe file which will be in itself an
input for the encoder (ffmpeg). ffmpeg will convert a series of images to a
video and encode it to webm video format with 24 Frames Per Second (FPS)
and feed it to the streaming server (ffserver).

Software Type Version

Ubuntu Operating System 18.04.3 LTS

ffmpeg, ffserver encoding, streaming 2.1.git

lighttpd web server 1.4.45

Table 5.1: Server Software components

5.2 server/client-structure 25

5.2.2 The Client

The client uses google chrome browser without plugins. The browser has all
the required API’s, which loads the needed libraries directly from Content
Delivery Network (CDN) when the webpage starts. Some of the libraries
and API are:

• Performance API: allow us to accurately calculate the time between the
request and the response to estimate the network latency (supported
in Chrome v.6 - 81).

• Tnsorflow.js: to allow us to build the neural network in the browser.

• WebGl API: we didn’t use it directly but tnsorflow.js needs it in
order to accelerate the training and prediction processes (supported
in Chrome v. 56 - 81).

• Web Hypertext Application Technology Working Group (WHATWG):
is embedded into HTML5 to get the video statistics.

• Vis API: to draw the diagrams directly in the browser so there is no
need to export the data out of the browser to draw them.

Software Type Version

Ubuntu Operating System 18.04 LTS

Tensorflow.js Machine Learning js Library 1.4.0

Chrome Browser 58.0.3029.96

Table 5.2: Client Software components

Teil II

I M P L E M E N TAT I O N

6
C O L L E C T I N G V I D E O A N D N E T W O R K S TAT I S T I C S

6.1 indexed webpage

The indexed webpage contains the default video element provided by
HTML5 to display data from the streaming server.
All the calculated information about the network status is located on the
right side of the HTTP webpag, the client hardware and the playback video
statistics (Fig.6.1).

Fig. 6.1: Starting Webpage

This data is needed for preparing the training data for ML. and for
predicting the required streaming bitrate.
As soon as the web page is loaded, it runs an initial test to collect information
about the network statistics, then it will run the test every 5 seconds. And
the video playback statistics are calculated every 1 second.
Mouse position is catched by adding an event listener to (mousemove).
The number of CPU cores can be known using hardwareConcurrency API.

6.2 received bitrate and fps

To calculate the received bitrate in the client and the fps of the video we used
the solution implemented in [21] which relies on Webkit.webkitDecodedByteCount
and webkitDecodedFrameCount are the main metrics we used. Those two
metrics start counting when the video starts. To get the received bitrate (b)

29

30 collecting video and network statistics

and (fps) for every second we subtract the current value with the value one
second earlier.

b =
d(webkitDecodedByteCount)

dt
(6.1)

fps =
d(webkitDecodedFrameCount)

dt
(6.2)

6.3 rtt

RTT will give us an important overview about the network state because it
has a direct relationship to network bandwidth and Loss [16]:

BW =
MSS

RTT

C
√
p

(6.3)

where BW is network bandwidth, MSS is maximum segment size, C
is a constant, and P is loss. As we see RTT is Inversely proportional with
network bandwidth.

Fig. 6.2: Calculating RTT

To get RTT value an HTTP request will be sent and we’ll measure the
time to get the response, that means it isn’t passive measuring.To reduce
the measuring impact on the network load as possible we request an empty
file from the server (Fig.6.2).

The flowchart in Fig.6.4 shows the measuring steps.
The measuring starts when a request is sent at the same time we start

6.3 rtt 31

timing and waiting for the response. If the browser doesn’t support the
performance API we calculate RTT using the difference between send and
response time. More accurately will be using performance API to get the
exact request time. Luckily almost all modern browsers support this API.
We repeat these steps several times and we take the average value from it
(4 times in our case).
The process time in the server to deal with the request is ignored.

To prevent cashing in the browser a random string is added to the request.
The request will be as follow:
xhr[0].open("GET", "http : //10.1.5.2/empty.js" +
url_sep("http : //10.1.5.2/empty.js") + "r = " +Math.random(), true);

Where (10.1.5.2) is the ip address of the video server, empty.js is the
empty file, and Math.random() generates a random number.

6.3.1 Measurement Accuracy

The accuracy of this measurement is tested by changing the network latency
using ipfw on the delay node between the server and the client. Fig.6.3
shows the error percentage of the measurement compared with the ping
function.

Fig. 6.3: RTT Error

32 collecting video and network statistics

Fig. 6.4: RTT FlowChart

6.4 jitter 33

6.4 jitter

Jitter is the amount of changes in latency measured in milliseconds (ms).
It refers to the fluctuation in the latency of the received packets. We can
calculate it by subtracting the current RTT with the last one.

6.5 smoothing function

To reduce the effect of shot bursts on the ANN input from the network
fluctuation, the measured values (received bitrate, FPS and DecodedFra-
mes) should go through a smoothing function. The used function is the
exponential smoothing[21]:

α = e
log(1

2
)

η (6.4)

Where η defines the half-life of the estimation.
The smoothing function will be applied to measured bitrate as follows:

b̂(n) = (1−α).b(n) +α.b̂(n−1) (6.5)

Considering b(n) is the bitrate sample, b̂(n) is smoothed bitrate, and the
current value (n) and the previous value (n− 1).

The half-life parameter η represents how quickly the smoothing function
output will reach the end value.
If η too small the smoothed output will be changed quickly and the connec-
tion fluctuation will pass through. If it is too large the fluctuation will
be filtered, but it can lead to stuttering in the video playback, when the
connection conditions becomes worse.
To overcome this problem, a non-symmetric smoothing function is imple-
mented, which has two half-lifes to react quicker, when the sample bitrate
lower than it’s previous smoothed bitrate.

Algorithm 2 Signalling of Bit Rate Switch

Require: b̂(n−1),b(n)

1: if b̂(n−1) 6 b(n) then
2: η = 3;

3: else if b̂(n−1) > b(n) then
4: η = 1.5;
5: end if
b̂(n) = Smooth(b(n),η);

Fig.6.5 shows comparison between normal exponential smoothing functi-
on and non-symmetric smoothing function, notice that the non-symmetric

34 collecting video and network statistics

function (in blue) responds quicker when the the received bitrate goes
down, but it changes it’s output value slower when the bitrate goes high
again.

Fig. 6.5: Non-symetric Smoothing

7
N E U R A L N E T W O R K

7.1 creating the network model

To apply ML in the browser the latest stable version of tensorflow.js (Version
1.4.0) is imported using CDN when the webpage is loaded. A layer API is
used to build the model, which allows the developer to add a linear stack
of layers to the model.

7.2 network architecture

A feedforward neural network architecture is applied. The Fig.7.1 shows
that the network has two hidden layers, every layer has 100 nodes. The
activation function on each node is (sigmoid).
the network inputs are RTT, FPS, DecodedBit, and DecodedFrames.
The output of the network is the targeted bitrate, which is one of three
values: 300, 2000, 5000 bps.

Fig. 7.1: Network Architecture

Since the ML runs in the browser, it’s very important to keep the model as
small as possible. A small size model will perform faster at prediction time.
Also it has faster training time and takes fewer processing capacity. Especi-
ally if the user is trying to open the webpage on a smartphone. Additionally
the model will take smaller storage space if it is saved in the browser data.

35

36 neural network

7.3 collecting the training data

To train the network we used the supervised learning method, which requi-
res a data set that contains network input examples attached to it’s output
(Labeled data).
The training data set should cover all network connection cases, and it is
saved as JSON file on the server. The server provides the file when the client
wants to train the ANN.

To simulate different cases of the network connection, we used ipfw
which runs in the delay node between the routers (see Fig.5.1). Ipfw allows
us to change the network latency and the packet loss rate.
The network inputs are collected from the webpage, which are basically the
video and the network statistics.
The targeted bitrate is chosen with help from iperf [10], which shows the
available bandwidth in the network connection between the client and the
server.

7.4 training the model

In the training phase the model parameters will be obtained using adam
optimizer and the(meanSquaredError) loss function.
Training involves several steps [8]:

• Getting a batch of data to the model.

• Asking the model to make a prediction.

• Comparing that prediction with the "true"value.

• Deciding how much to change each parameter so the model can make
a better prediction in the future for that batch.

Fig.7.2 shows the loss using adam optimizer with learning rate (0,001).

Using larger learning rate can some times lead to the same results with
smaller number of epochs. as shown in Fig.7.3, where the learning rate is
(0,1).

To make the training process more efficient, we randomize the order of
the training samples by shuffling them for each epoch. It can be done by
activating the shuffle parameter in the training function.
For this example the training time took about 23 second. The training time
can be faster if we reduce the node number in each layer and the number
of epochs.

Fig.7.4 shows the loss function using (sgd) optimizer for the training
process. The prediction error in this case didn’t go under 20%, that means
the model prediction has less accuracy.

7.4 training the model 37

Fig. 7.2: Loss Function Output with learining rate (0,001)

Fig. 7.3: Loss Function Output with learning rate (0,1)

38 neural network

Fig. 7.4: Loss Function Output with using sgd optimizer)

7.5 saving the trained model

The browser in the client side needs to train the model just ones, because
the model will be saved in the browser local storage after finishing the
training process. This will save the training time in the future use.
As Fig.7.5 shows, the trained model will be loaded if there is one in the
browser local storage.

7.6 network profile and neural network output

With ipfw we set the Packet Loss Rate (PLR) to 0.5% and changed the latency
between (0-100) and measured the network bandwidth between the client
and the server using iperf.
Then we set PLR to 1% and remeasured the bandwidth again as shown in
table 7.1.

7.6 network profile and neural network output 39

Fig. 7.5: Storing The Trained Model

40 neural network

RTT (ms) BW with 0.5% plr(Mbps) BW with 1% plr(Mbps)

0 177 112

10 16.80 12.10

20 7.32 7.59

30 6.80 3.05

40 4.30 3.05

50 3.81 2.41

60 3.60 2.24

70 2.19 2.04

80 2.09 1.45

90 2.04 1.34

100 1.82 1.04

Table 7.1: Network Bandwidth

We tested our ANN output with the same network conditions and the
result shows that the ANN reacts to changes in RTT and PLR.
The targeted bitrate in the ANN output was always smaller than the network
bandwidth measured by iperf to avoid video stuttering. Fig.7.6 and Fig7.7
reveal the ANN output.

Fig. 7.6: Neural Network Output, PLR = 0.5%

7.6 network profile and neural network output 41

Fig. 7.7: Neural Network Output, PLR = 1%

8
C O N C L U S I O N

In this work we implement ML on the client side without any additional
software or plugins. We apply ABR solutions on low latency application (free
view-point video) to select one of three different bitrates (300-2000-5000)
based on network conditions.
Lightweight active RTT measurement in the browser is introduced by sen-
ding a request to the server and waiting for the response and with help
from performance API we can accurately calculate the RTT, which used for
network profiling
A passive measurement was introduced to acquire the video statistics using
WHATWG Group, these measurements will be used later for the neural
network input.
Using tensorflow.js we built and trained a feed forward neural network. We
trained a variety of models with different parameters and selected the ones
with better accuracy.
We saved the training model in the browser data using local storage API, so
the user doesn’t need to wait for the training process in the times after and
then we introduced a non-symmetrical exponential smoothing function to
filter the network fluctuation.
In this thesis we tested the ML on a PC which runs under ubuntu and the
data set of the neural network is calculated under emulab environment.
Applying ML in the browser allows us to run the ABR algorithm on a large
number of different devices. In the future we can apply this ABR algorithm
to other devices like smartphones and tablets which can connect to the
internet in a variety of different ways like WiFi and 4G, and therefore larger
data set for neural network model training will be needed.

43

Teil III

A P P E N D I X

A
C O D E

HTML file:

1 <!DOCTYPE html>

<html>

<head>

<title>Live Cam</title>

6 <!-- Import TensorFlow.js -->

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/dist/tf.min.js">

</script>

<!-- Import tfjs-vis -->

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-vis@1.0.2/dist/

tfjs-vis.umd.min.js"></script>

<!-- Shaka Player -->

11 <script src="https://cdnjs.cloudflare.com/ajax/libs/shaka-player/2.5.5/shaka

-player.compiled.js"></script>

</head>

16

<style>

body {

background: white;

}

21 main {

display: grid;

grid-template-columns: 2fr 1fr;

justify-items: center;

}

26 .vPlayerBox {

position: absolute;

left: 0;

}

.dataBox {

31 position: absolute;

right: 0;

}

.dataBox div {

border: 1px #ccc solid;

36 padding: 10px;

}

form {

padding: 2px;

}

41 </style>

<body>

<button id="up">⇧</button>

<button id="down">⇩</button>

46 <div><input type="checkbox" id="rendomMove" > Random Move</div>

47

48 code

<p id="bitRateLabel">Requested Bitrate:</p>

<main>

<div class="vPlayerBox" style="height:30%; width:40%;resize:both; border:2

px solid; overflow:auto">

51 <video id="myVideo" preload="auto" autoplay="autoplay" controls

style="height:99%; width:99%">

Your browser does not support HTML5 streaming!

</video>

</div>

56

<div class="dataBox">

<div class="nInfoBox">

<h4>Network Info:</h4>

<form>RTT(ms): <input type="text" id="rtt"></form>

61 <form>Jitter(ms): <input type="text" id="jitter"></form>

<h4>Hardware Info:</h4>

<form>Core: <input type="text" id="hw"></form>

<form>RAM: <input type="text" id="ram"></form>

</div>

66 <div calss="webKitBox">

<h4>WebKit:</h4>

<form>FPS: <input type="text" id="fps"></form>

<form>Decoded Frames: <input type="text" id="decodedFrames"></form>

<form>Dropped Frames: <input type="text" id="droppedFrames"></form>

71 <form>Decoded Bitrate(kb): <input type="text" id="decodedBitrate"></

form>

</div>

<div class="playerBox">

<h4>Video Player:</h4>

<form>Video Height: <input type="text" id="videoHeight"></form>

76 <form>Video Width: <input type="text" id="videoWidth"></form>

<form>Player Height: <input type="text" id="playerHeight"></form>

<form>Player Width: <input type="text" id="playerWidth"></form>

</div>

<div calss="uInputBox">

81 <h4>User Input:</h4>

<form>Mouse XPos: <input type="text" id="mouseXPos"></form>

<form>Mouse YPos: <input type="text" id="mouseYPos"></form>

</div>

</div>

86 </main>

<script src="JavaScript/script.js"></script>

<script src="JavaScript/rttTesting.js"></script>

<script src="JavaScript/neural.js"></script>

<script src="JavaScript/draw.js"></script>

91 </body>

</html> �
Main Script:

var mousePosSocket;

2 var SwitchSocket;

var videoPlayer;

var hwMemory;

var hwConcurrency;

code 49

var randomMove = false;

7

const MousePosUpdateRate = 30;

const calcDataHighFrequent = 1000;

const calcDataLowFrequent = 4000;

12 var trainingSet = [];

var bitRate = 5000;

document.addEventListener("DOMContentLoaded", () => {

initTests();

17 videoPlayer = document.getElementById(’myVideo’);

videoPlayer.src = ’http://10.1.5.2:8090/test1.webm’;

hwConcurrency = window.navigator.hardwareConcurrency;

hwMemory = navigator.deviceMemory;

mousePosSocket = new WebSocket(’ws://10.1.5.2:9000/ws/’);

22 mousePosSocket.binaryType = ’arraybuffer’;

document.addEventListener("mousemove", handleMoveEvent);

});

function startVideo() {

27 var mpd = "EncoderPipes/Streams/livehd.mpd";

var mpdUrl = ’https://turtle-tube.appspot.com/t/t2/dash.mpd’;

shaka.polyfill.installAll();

var video = document.getElementById(’myVideo’);

32

var player = new shaka.Player(video);

player.load(mpd);

37 }

document.getElementById("up").addEventListener("click", () => {

/*trainingSet.push({

RTT: rtt,

42 FPS: fps,

DecodedBitrate: weightedDecodedBit,

DecodedFrames: decodedFrames

});

console.log(trainingSet);*/

47 //drawRTTError();

});

document.getElementById("down").addEventListener("click", () => {

52 console.log(getNeuralPrediction());

});

function getNeuralPrediction(){

57 var data = [{

"FPS": fps,

"RTT": rtt,

"DecodedBitrate": weightedDecodedBit,

"DecodedFrames": decodedFrames

62 }];

return predictBitrate(data);

50 code

}

//* random move or from mouse:

67 var t;

document.getElementById("rendomMove").addEventListener("click", () => {

randomMove = (document.getElementById("rendomMove").checked) ? true :

false;

if (randomMove) {

document.removeEventListener("mousemove", handleMoveEvent);

72 t = setInterval(() => {

[X, Y] = getRandomPosition();

sendMousePos(X, Y);

},

MousePosUpdateRate);

77 } else {

clearInterval(t);

document.addEventListener("mousemove", handleMoveEvent);

}

});

82

function handleMoveEvent(e) {

var X = e.clientX.toFixed(2);

var Y = e.clientY.toFixed(2);

sendMousePos(X, Y);

87 }

async function initTests() {

// if there is no saved model

if (localStorage.getItem("tensorflowjs_models/my-model/info") === null) {

92 buildNeural();

getTrainingData();

} else {

model = await tf.loadLayersModel(’localstorage://my-model’);

}

97 calcNetworkData();

}

function sendMousePos(X, Y) {

document.getElementById("mouseXPos").value = X;

102 document.getElementById("mouseYPos").value = Y;

var bytearray = new Int32Array(2);

bytearray[0] = X;

bytearray[1] = Y;

107 if (mousePosSocket.readyState === WebSocket.OPEN)

mousePosSocket.send(bytearray.buffer);

}

var xPos = 0;

112 var yPos = 0;

function getRandomPosition() {

if (xPos > 10000) {

xPos = 0;

117 yPos = 0;

}

xPos += Math.random() * 3;

yPos += Math.random() * 3;

code 51

return [xPos.toFixed(2), yPos.toFixed(2)];

122 }

var decodedFrames;

var oldDecodedFrames = 0;

var droppedFrames;

127 var oldDroppedFrames = 0;

var decodedBitrate;

var oldDecodedByterate = 0;

var fps

var weightedFPS = 12;

132 var weightedDecodedBit = 1000;

function calcVideoData() {

decodedFrames = (videoPlayer.webkitDecodedFrameCount - oldDecodedFrames) *
1000 / calcDataHighFrequent;

oldDecodedFrames = videoPlayer.webkitDecodedFrameCount;

137

droppedFrames = (videoPlayer.webkitDroppedFrameCount - oldDroppedFrames) *
1000 / calcDataHighFrequent;

oldDroppedFrames = videoPlayer.webkitDroppedFrameCount;

decodedBitrate = (videoPlayer.webkitVideoDecodedByteCount -

oldDecodedByterate) * 8 /

142 calcDataHighFrequent; // 1000/1000 ms->s B->KB

oldDecodedByterate = videoPlayer.webkitVideoDecodedByteCount;

fps = decodedFrames - droppedFrames;

weightedFPS = exponentialSmoothing(weightedFPS, fps);

147 //console.log("WFPS: " + weightedFPS + " weightedDecodedBit: " +

weightedDecodedBit);

weightedDecodedBit = exponentialSmoothing(weightedDecodedBit,

decodedBitrate);

}

152 var rttArray = [];

var rtt;

var weightedRTT = 8;

var jitterArray = [];

var jitterVal = 0;

157 var weightedJitter = 1;

function calcNetworkData() {

pingTest(() => {

162 var sum = 0;

rttArray.forEach(element => {

sum = +sum + +element;

});

rtt = sum / rttArray.length;

167 weightedRTT = exponentialSmoothing(+weightedRTT, +rtt);

sum = 0;

jitterArray.forEach(element => {

sum = +sum + +element;

});

172 jitterVal = (jitterArray.length != 0) ? sum / jitterArray.length :

jitterVal;

52 code

weightedJitter = exponentialSmoothing(+weightedJitter, +jitterVal);

});

177

//console.log("WRTT: " + weightedRTT + " WJITT: " + weightedJitter);

}

var halflife_up = 3;

182 var halflife_down = 1.5;

var alpha_up = Math.exp(Math.log(0.5) / halflife_up);

var alpha_down = Math.exp(Math.log(0.5) / halflife_down);

function exponentialSmoothing(weightedInput, input) {

187 if (weightedInput <= input)

return Math.round(weightedInput * alpha_up + (1 - alpha_up) * input);

else

return Math.round(weightedInput * alpha_down + (1 - alpha_down) *
input);

}

192

var time = 0;

function writeVideoData() {

document.getElementById("rtt").value = rtt.toFixed(3);

document.getElementById("jitter").value = jitterVal.toFixed(3);

197 document.getElementById("hw").value = hwConcurrency;

document.getElementById("ram").value = hwMemory;

document.getElementById("fps").value = weightedFPS;

document.getElementById("decodedFrames").value = decodedFrames;

document.getElementById("droppedFrames").value = droppedFrames;

202 document.getElementById("decodedBitrate").value = weightedDecodedBit;

document.getElementById("videoHeight").value = videoPlayer.videoHeight;

document.getElementById("videoWidth").value = videoPlayer.videoWidth;

document.getElementById("playerHeight").value = videoPlayer.clientHeight;

document.getElementById("playerWidth").value = videoPlayer.clientWidth;

207 document.getElementById("bitRateLabel").innerHTML = "Requested Bitrate: "

+ getNeuralPrediction();

rawBRValues.push({

x: time,

y: decodedBitrate

212 });

time = time + 1;

}

window.setInterval(() => {

217 calcVideoData();

writeVideoData();

},

calcDataHighFrequent);

222 window.setInterval(() => {

calcNetworkData();

},

calcDataLowFrequent); �
RTT Calculation:

code 53

var xhr;

var count_ping = 5;

var pingStatus = 0;

4 var jitterStatus = 0;

var ptCalled = false;

function pingTest(_callback) {

if (ptCalled) return;

else ptCalled = true;

9 var startT = new Date().getTime();

var prevT = null;

var ping = 0.0;

var jitter = 0.0;

var i = 0; // counter of pongs received

14 var prevInstspd = 0; // last ping time, used for jitter calculation

xhr = [];

rttArray = [];

jitterArray = [];

// ping function

19 var doPing = function () {

prevT = new Date().getTime();

xhr[0] = new XMLHttpRequest();

xhr[0].onload = function () {

if (i === 0) {

24 prevT = new Date().getTime(); // first pong

} else {

var instspd = new Date().getTime() - prevT;

try {

//try to get accurate performance timing using performance

api

29 var p = performance.getEntries();

p = p[p.length - 1];

var d = p.responseStart - p.requestStart;

if (d <= 0) d = p.duration;

if (d > 0 && d < instspd) instspd = d;

34 } catch (e) {

//if not possible, keep the estimate

console.log("Performance API not supported, using estimate

");

}

//noticed that some browsers randomly have 0ms ping

39 if (instspd < 1) instspd = prevInstspd;

if (instspd < 1) instspd = 1;

var instjitter = Math.abs(instspd - prevInstspd);

if (i === 1) ping = instspd;

/* first ping, can’t tell jitter yet*/

44 else {

ping = instspd < ping ? instspd : ping * 0.8 + instspd *
0.2;

if (i === 2) jitter = instjitter;

else jitter = instjitter > jitter ? jitter * 0.3 +

instjitter * 0.7 : jitter * 0.8 + instjitter * 0.2;

}

49 prevInstspd = instspd;

}

pingStatus = ping.toFixed(3);

jitterStatus = jitter.toFixed(3);

i++;

54 code

54 if (i < count_ping) {

doPing();

if (pingStatus != 0) rttArray.push(pingStatus);

if (jitterStatus != 0) jitterArray.push(jitterStatus);

59 } else {
_callback();

ptCalled = false;

return;

}

64 }.bind(this);

xhr[0].onerror = function () {

// a ping failed, cancel test

console.log("ping failed");

//abort

69 pingStatus = "Fail";

jitterStatus = "Fail";

clearRequests();

console.log("ping test failed, took " + (new Date().getTime() -

startT) + "ms");

ptCalled = false;

74 return;

}.bind(this);

// send xhr

xhr[0].open("GET", "http://10.1.5.2/empty.js" + url_sep("http

://10.1.5.2/empty.js") + "r=" + Math.random(), true); // random

string to prevent caching

xhr[0].send();

79 }.bind(this);

doPing(); // start first ping

}

84 //* stops all XHR activity, aggressively

function clearRequests() {

if (xhr) {

for (var i = 0; i < xhr.length; i++) {

try {

89 xhr[i].onprogress = null;

xhr[i].onload = null;

xhr[i].onerror = null;

} catch (e) {}

try {

94 xhr[i].upload.onprogress = null;

xhr[i].upload.onload = null;

xhr[i].upload.onerror = null;

} catch (e) {}

try {

99 xhr[i].abort();

} catch (e) {}

try {

delete xhr[i];

} catch (e) {}

104 }

xhr = null;

}

}

code 55

109 function url_sep(url) {

return url.match(/\?/) ? "&" : "?";

} �
Neural Network:

var inputTrainingData;

var outputTrainingData;

var model;

4 var testingData;

function buildNeural() {

model = tf.sequential();

9 //* build neural network

model.add(tf.layers.dense({

inputShape: [4],

activation: "sigmoid",

units: 100,

14 }));

model.add(tf.layers.dense({

activation: "sigmoid",

units: 100,

19 }));

model.add(tf.layers.dense({

activation: "sigmoid",

units: 3,

24 }));

model.compile({

loss: "meanSquaredError",

optimizer: tf.train.adam(0.001)

29 });

}

function getTrainingData() {

fetch(’./DataSet/trainingSet2.json’)

34 .then(response => {

return response.json()

})

.then(data => {

inputTrainingData = tf.tensor2d(convertToMatrix(data));

39 outputTrainingData = tf.tensor2d(data.map(item => [

item.BitRate == 5000 ? 1 : 0,

item.BitRate == 2000 ? 1 : 0,

item.BitRate == 300 ? 1 : 0,

]));

44 trainNetwork().then(() => getTestingData());

})

.catch(err => {

console.log(err)

});

49 }

async function trainNetwork() {

56 code

const startTime = Date.now();

await model.fit(

54 inputTrainingData,

outputTrainingData,

{

epochs: 1000,

shuffle: true,

59 callbacks: {onBatchEnd}

}).then(() => drawLoss(lossRate));

const endTime = Date.now();

console.log(endTime - startTime);

if (confirm(’Do you want to save this Model?’)) {

64 model.save(’localstorage://my-model’);

} else {

// Do nothing!

}

}

69

var ii = 0;

var lossRate = [];

function onBatchEnd(batch, logs) {

lossRate.push({x: ii, y: logs.loss});

74 ii++;

}

//* to test our neural network accuracy

function getTestingData() {

79 fetch(’./DataSet/testingSetTest2.json’)

.then(response => {

return response.json()

})

.then(data => {

84 testingData = tf.tensor2d(convertToMatrix(data));

model.predict(testingData).print();

})

.catch(err => {

console.log(err)

89 });

}

function predictBitrate(data){

var predictedBitrate;

94 tf.tidy(() => {

var inputANN = tf.tensor2d(convertToMatrix(data));

var results = model.predict(inputANN);

var index = results.argMax(1).dataSync()[0];

switch(index){

99 case 0:

predictedBitrate = 5000;

break;

case 1:

predictedBitrate = 2000;

104 break;

default:

predictedBitrate = 300;

break;

}

109 });

code 57

return predictedBitrate;

}

//* convert json data to matrix for neural network input

114 function convertToMatrix(data) {

return data.map(item => [

item.RTT,

item.DecodedFrames,

item.FPS,

119 item.DecodedBitrate,

]);

} �

L I T E R AT U RV E R Z E I C H N I S

[1] Anthony Romero. What is video encoding? codecs and compressi-
on techniques, 2018. URL https://www.ibm.com. [Online; accessed
November-2019].

[2] Taiwo Oladipupo Ayodele. Types of machine learning algorithms. In
New advances in machine learning. IntechOpen, 2010.

[3] Chao Chen, Yao-Chung Lin, Anil C. Kokaram, and Steve Benting.
Encoding bitrate optimization using playback statistics for http-based
adaptive video streaming. CoRR, abs/1709.08763, 2017. URL http:

//arxiv.org/abs/1709.08763.

[4] Emulab contributors. emulab frontpage, 2006. URL https://www.

emulab.net/. [Online; accessed November-2019].

[5] Wolfgang Ertel. Grundkurs künstliche Intelligenz: eine praxisorientierte
Einführung. Springer-Verlag, 2016.

[6] Zoubin Ghahramani. Unsupervised Learning, pages 72–112. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-28650-9.
doi: 10.1007/978-3-540-28650-9_5. URL https://doi.org/10.1007/

978-3-540-28650-9_5.

[7] Google contributors. Recommended settings for vod, 2017. URL https:

//developers.google.com/. [Online; accessed November-2019].

[8] Google contributors, 2018. URL https://www.tensorflow.org/. [On-
line; accessed November-2019].

[9] Jun Han and Claudio Moraga. The influence of the sigmoid function
parameters on the speed of backpropagation learning. In José Mira and
Francisco Sandoval, editors, From Natural to Artificial Neural Computati-
on, pages 195–201, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.
ISBN 978-3-540-49288-7.

[10] iperf, 2014. URL https://software.es.net/iperf/. [Online; accessed
November-2019].

[11] IPFW contributors. Ipfw, 2006. URL https://www.freebsd.org/doc/

handbook/firewalls-ipfw.html. [Online; accessed December-2019].

[12] Jan Ozer. How to produce for adaptive streaming, 2012. URL https:

//www.streamingmedia.com/. [Online; accessed November-2019].

[13] J. Jiang, T. Fogal, C. Woolley, and P. Messmer. A lightweight h.264-
based hardware accelerated image compression library. In 2016 IEEE
6th Symposium on Large Data Analysis and Visualization (LDAV), pages
99–100, Oct 2016. doi: 10.1109/LDAV.2016.7874337.

59

https://www.ibm.com
http://arxiv.org/abs/1709.08763
http://arxiv.org/abs/1709.08763
https://www.emulab.net/
https://www.emulab.net/
https://doi.org/10.1007/978-3-540-28650-9_5
https://doi.org/10.1007/978-3-540-28650-9_5
https://developers.google.com/
https://developers.google.com/
https://www.tensorflow.org/
https://software.es.net/iperf/
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
https://www.streamingmedia.com/
https://www.streamingmedia.com/

60 literaturverzeichnis

[14] Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj. Rate adaptation
for adaptive http streaming. In Proceedings of the Second Annual ACM
Conference on Multimedia Systems, MMSys ’11, pages 169–174, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0518-1. doi: 10.1145/1943552.
1943575. URL http://doi.acm.org/10.1145/1943552.1943575.

[15] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural ad-
aptive video streaming with pensieve. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, SIGCOMM
’17, pages 197–210, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-
4653-5. doi: 10.1145/3098822.3098843. URL http://doi.acm.org/10.

1145/3098822.3098843.

[16] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott.
The macroscopic behavior of the tcp congestion avoidance algorithm.
SIGCOMM Comput. Commun. Rev., 27(3):67–82, July 1997. ISSN 0146-
4833. doi: 10.1145/263932.264023. URL http://doi.acm.org/10.1145/

263932.264023.

[17] MDN contributors. Getting started with webgl, 2019. URL
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/

Tutorial/Getting_started_with_WebGL. [Online; accessed November-
2019].

[18] Yanyuan Qin, Shuai Hao, K. R. Pattipati, Feng Qian, Subhabrata Sen,
Bing Wang, and Chaoqun Yue. Abr streaming of vbr-encoded vi-
deos: Characterization, challenges, and solutions. In Proceedings of the
14th International Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’18, pages 366–378, New York, NY, USA, 2018.
ACM. ISBN 978-1-4503-6080-7. doi: 10.1145/3281411.3281439. URL
http://doi.acm.org/10.1145/3281411.3281439.

[19] SIMON KEMP. Digital 2019: Global internet use acce-
lerates, 2019. URL https://wearesocial.com/blog/2019/01/

digital-2019-global-internet-use-accelerates. [Online; accessed
November-2019].

[20] Matthias Ueberheide, Felix Klose, Tilak Varisetty, Markus Fidler, and
Marcus Magnor. Web-based interactive free-viewpoint streaming: A
framework for high quality interactive free viewpoint navigation. In
Proceedings of the 23rd ACM International Conference on Multimedia, MM
’15, pages 1031–1034, New York, NY, USA, 2015. ACM. ISBN 978-1-
4503-3459-4. doi: 10.1145/2733373.2806394. URL http://doi.acm.org/

10.1145/2733373.2806394.

[21] Tilak Varisetty and David Dietrich. Client-side bandwidth estimation
technique for adaptive streaming of a browser based free-viewpoint ap-
plication. In Proceedings of the 2019 Workshop on Hot Topics in Video Ana-
lytics and Intelligent Edges, HotEdgeVideo’19, pages 39–44, New York,
NY, USA, 2019. ACM. ISBN 978-1-4503-6928-2. doi: 10.1145/3349614.
3356021. URL http://doi.acm.org/10.1145/3349614.3356021.

http://doi.acm.org/10.1145/1943552.1943575
http://doi.acm.org/10.1145/3098822.3098843
http://doi.acm.org/10.1145/3098822.3098843
http://doi.acm.org/10.1145/263932.264023
http://doi.acm.org/10.1145/263932.264023
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Tutorial/Getting_started_with_WebGL
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Tutorial/Getting_started_with_WebGL
http://doi.acm.org/10.1145/3281411.3281439
https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates
https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates
http://doi.acm.org/10.1145/2733373.2806394
http://doi.acm.org/10.1145/2733373.2806394
http://doi.acm.org/10.1145/3349614.3356021

literaturverzeichnis 61

[22] Wikipedia contributors. Streaming media — Wikipedia, the free ency-
clopedia, 2019. URL https://en.wikipedia.org/w/index.php?title=

Streaming_media&oldid=928251284. [Online; accessed 28-November-
2019].

[23] Xing Yan, Lei Yang, Shanzhen Lan, and Xiaolong Tong. Application
of html5 multimedia. In 2012 International Conference on Computer
Science and Information Processing (CSIP), pages 871–874, Aug 2012. doi:
10.1109/CSIP.2012.6308992.

[24] B. Zhou, J. Wang, Z. Zou, and J. Wen. Bandwidth estimation and
rate adaptation in http streaming. In 2012 International Conference on
Computing, Networking and Communications (ICNC), pages 734–738, Jan
2012. doi: 10.1109/ICCNC.2012.6167520.

https://en.wikipedia.org/w/index.php?title=Streaming_media&oldid=928251284
https://en.wikipedia.org/w/index.php?title=Streaming_media&oldid=928251284

	Titelblatt
	Ehrenwörtliche Erklärung
	Inhaltsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Acronyms

	TECHNICAL BACKGROUND
	1 Intordution
	1.1 Real Time interactive free-viewpoint Video
	1.2 Artificial Intelligence
	1.3 Motivation
	1.4 Research Question
	1.5 Contribution
	1.6 Structure Of The Work

	2 Streaming And Encoding
	2.1 HTTP Streaming
	2.2 Adaptive Bitrate Streaming
	2.3 Video Encoding
	2.4 Constant Bitrate (CBR) And Variable Bitrate (VBR)
	2.5 Video Bitrate And Resolution Relationship

	3 Neural Network
	3.1 Introduction
	3.2 Types Of Learning
	3.3 The Neural Network Parameters And Hyperparameters
	3.4 Activation Functions
	3.4.1 Sigmoid
	3.4.2 Tanh
	3.4.3 SELU

	3.5 Loss Function
	3.6 Optimizers
	3.7 Epochs
	3.8 TensorFlow.js

	4 Related Works
	5 Experiment Setup
	5.1 Network Topology
	5.2 Server/Client-Structure
	5.2.1 The Server
	5.2.2 The Client

	IMPLEMENTATION
	6 Collecting Video And Network Statistics
	6.1 Indexed Webpage
	6.2 Received Bitrate And FPS
	6.3 RTT
	6.3.1 Measurement Accuracy

	6.4 JITTER
	6.5 Smoothing Function

	7 Neural Network
	7.1 Creating The Network Model
	7.2 Network Architecture
	7.3 Collecting The Training Data
	7.4 Training The Model
	7.5 Saving The Trained Model
	7.6 Network Profile and Neural Network Output

	8 Conclusion

	Appendix
	A Code
	Literaturverzeichnis

