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ABSTRACT
We consider the wireless geolocation using the time of arrival
(ToA) of radio signals in a cellular setting. The main concern
in this paper involves the effects of the error knowledge of
the path loss exponent (PLE). We derive the asymptotic error
performance of the maximum likelihood (ML) estimator un-
der the imperfect PLE. We point out that a previous method
provides inaccurate performance prediction and then present
a new method based on the Taylor series expansion. Numer-
ical examples illustrate that the Taylor analysis captures the
bias and the error variance of the ML estimator under the im-
perfect PLE better than the conventional method. Simulation
results also illustrate that in the threshold region, the ML es-
timator outperforms the MC estimator even in the presence
of the PLE error. However, in the asymptotic region the MC
estimator and the ML estimator with the perfect PLE outper-
form the ML estimator under the imperfect PLE.

Keywords: Time-of-arrival estimation, maximum likeli-
hood estimator, path loss exponent.

1. INTRODUCTION
One of the requirements in wireless communications is the
knowledge of the mobile location. For the localization based
on distance estimation where the distance is estimated from
received signal strength (RSS), path loss exponent (PLE) ap-
pears as a key parameter. In many wireless networks, the
value of the PLE is assumed to be known a priori. However,
this assumption is often too ideal for realistic environment,
because the PLE may change according to surrounding vari-
ation and thus may need to be estimated. Since the accuracy
of the PLE is crucial for the geolocation, the imperfect PLE
plays a crucial role in the performance analysis of the wire-
less systems. Despite the uncertain knowledge of the radio
propagation caused by, e.g., the estimation of the PLE and
the possible fluctuation of the PLE, the performance of the
wireless localization systems has to be determined as accu-
rately as possible.

1.1 Literature Review
Several related works are devoted to the problem of the un-
known PLE in the wireless location. In [1], the PLEs are
assumed to be different and random with uniform and nor-
mal distributions, and based on the RSS the consideration of
the different PLEs for each link increases the localization ac-
curacy compared to the identical PLE assumption. In [2] the
PLE is calibrated from the measurements, whereas in [3] and

[4] several algorithms for the PLE estimation are proposed.
In [4], the algorithms for the estimation of the path loss be-
tween any sensor and any arbitrary point inside the network
are designed using the path loss measurements among sen-
sors. In [5], a handover algorithm is presented using the least
squares estimate of path loss parameters for each link from
mobile station to base station (BS). Furthermore, the sensitiv-
ity of the maximum likelihood (ML) estimator under model
error is investigated for the application of direction-of-arrival
estimation (see, e.g., [6, 7]).

In the previous works, no attention was paid to the imper-
fect PLE in the ToA estimation with path attenuation yet. As
far as robustness is concerned, the study of the ML estimator
for the ToA estimation under an imperfect PLE is deemed
meaningful since a system designer will be able based on
such a study to decide whether the path loss model under the
imperfect PLE is useful or not.

1.2 Purpose and Problem Statement
The objectives of this work are twofold: i) to investigate the
performance of the ML estimator in the ToA estimation un-
der the imperfect PLE, and ii) to extend the hybrid RSS-ToA
geolocation approach to the case that the transmitted signal
is the second-derivative Gaussian monocycle pulse. In this
work, we evaluate the ToA estimation performance based on
the Taylor series expansion. The performance of the ML esti-
mator under the imperfect PLE is investigated and compared
to the ML estimator with the perfect PLE and to the maxi-
mum correlation (MC) estimator, which does not require the
knowledge of the PLE.

2. TRANSCEIVER MODEL
The received signal at the b-th BS is given by

rb(t) = abs(t− b)+nb(t), (1)

where ab is the path gain at the b-th BS, s(t− b) is the trans-
mitted signal delayed by b, which is the time delay of the
propagation to the b-th BS, and nb(t) is the additive noise
at the b-th BS, which is assumed as a circularly-symmetric
complex-valued zero-mean white Gaussian process with the
double-sided power spectral density 2

n (Joule). Based on the
path attenuation, the loss gain ab can be written as (see, e.g.,
[8])

ab =
√ (

d0
c b

) 1
2 b

, (2)
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where d0 is the close-in distance in the far field region, b is
the PLE at the b-th BS, and is the unitless constant depend-
ing on antenna characteristics and average channel attenua-
tion given by

=
c2

16 2d20 f 20
, (3)

with f0 being the central frequency and c being the speed of
the light. The estimated values of the ToA from the MC and
ML estimators are given by (see [9])

ˆMC,b = argmax
b

( b), (4a)

ˆML,b = argmin
b
a2bEs−2ab ( b), (4b)

where ( b) =
∫ To
0 (rb(t)s∗(t− b))dt is the correlation

between the transmitted and received signals and E s =∫ T0
0 |s(t)|2dt is the transmitted signal energy with To, (·),
and (·)∗ being the observation period, the real part, and the
conjugate, respectively.

3. PERFORMANCE ANALYSIS METHODS
We assume for simplicity that the PLEs are the same for all
BSs. The PLE is assumed to be subject to an additive error,
i.e.,

= 0+ , (5)
where 0 is the true value of the PLE and is the additive
error. To study the ML estimator under the imperfect PLE,
the objective function of the ML estimator can be expressed
as (see [10, eq. (5.2.1)])

fML( b| ) = a2b( b| )Es−2ab( b| ) ( b). (6)

For notation brevity, we introduce ab,0 as the loss gain for
the true values of the ToA and the PLE, and ã b,0 as the loss
gain for the true value of the ToA and the imperfect PLE.
Moreover, the first and the second derivatives of fML( b| )
with respect to b and for the true value of the ToA b = b,0
can be derived as (see [10, Appendix A. 6])

b
fML( b| )

∣∣∣∣
b= b,0

= − 1
b,0

(
Esãb,0−Esab,0− ns,0

)
ãb,0−2ãb,0 ˙ns,0,

(7)

2

2
b
fML( b| )

∣∣∣∣
b= b,0

=
1
2
b,0

(1+ )Esã2b,0−
1
2
b,0

(
1+

1
2

)
ãb,0 ( b,0)

+
1
b,0
2 ãb,0 ˙ns,0−2ãb,0

(
−4 2 ¯2Esab,0+ ¨ns,0

)
,

(8)

and
2

b
fML( b| )

∣∣∣∣
b= b,0

=
1
b,0
ãb,0(ab,0Es+ ns,0−Esãb,0)

− 1
b,0

ln
(

d0
c b,0

)
ãb,0

(
Esãb,0−

1
2
ab,0Es−

1
2 ns,0

)

− ln
(

d0
c b,0

)
ãb,0 ˙ns,0,

(9)

where ns,0 =
∫ To
0 (n(t)s∗(t− b))dt

∣∣∣
b= b,0

is
the correlation between the noise and the trans-
mitted signal at the true value of the ToA, and
˙ns,0 =

b

∫ To
0 (n(t)s∗(t− b))dt

∣∣∣
b= b,0

and ¨ns,0 =
2
2
b

∫ To
0 (n(t)s∗(t− b))dt

∣∣∣
b= b,0

are the first and the

second derivatives of the correlation between the noise and
the transmitted signal at the true value of the ToA, respec-
tively. To derive the error performance, we should also
use the results Enb(t) { ˙ns,0} = 0, Enb(t)

{
2
ns,0

}
= 1

2Es
2
n ,

Enb(t)
{
˙ 2ns,0

}
= 2 2Es ¯ 2 2

n , Enb(t) { ns,0 ˙ns,0} = 0, where
Enb(t){·} is the expectation with respect to the noise nb(t),
and ¯ is the effective bandwidth of the transmitted signal.

3.1 Friedlander Method

The theoretical expression of the error between the estimated
and the true ToAs is given by (see [7, eq. 20])

ˆb,ML( )− b,0 = −
( − 0)Enb(t)

{
2

b
fML( b| )

∣∣∣
b= b,0

}

Enb(t)
{

2

b b
fML( b| )

∣∣∣
b= b,0

} .

(10)

Substituting the expectation of (8) and (9) with respect to
the noise nb(t) into (10), we obtain the error between the
estimated and the true values of the ToA as follows (see [10,
eq. (5.2.2)])

ˆb,ML( )− b,0 = −
1

1
2
b,0

(1+ )Esãb,0− 1
2
b,0

(
1+ 1

2
)
Esab,0+8 2 ¯ 2Esab,0

( − 0)
[
1
b,0

(Esab,0+ ns,0−Esãb,0)− ln
(

d0
c b,0

)
˙ns,0

− 1
b,0

ln
(

d0
c b,0

)(
Esãb,0−

1
2
Esab,0−

1
2 ns,0

)]
.

(11)

3.1.1 ML Estimator Bias by the Friedlander Analysis
Method

Taking the expectation of (11), we obtain the bias of the
ML estimation under the imperfect PLE as follows (see [10,
eq. (5.2.5)])

Enb(t)
{
ˆb,ML( )− b,0

}
= −

( − 0)(ab,0− ãb,0)− ( − 0) ln
(

d0
c b,0

)(
ãb,0− 1

2ab,0
)

8 2 ¯ 2 2
b,0ab,0−

(
(ab,0− ãb,0)+ 2

( 1
2ab,0− ãb,0

)) b,0.

(12)
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3.1.2 ML Estimator Error Variance by the Friedlander
Analysis Method

Taking the expectation of the square of (11), we obtain the
error variance of (11) as follows (see [10, eq. (5.2.14)])

Enb(t)
{
( ˆb,ML( )− b,0)2

}

=
2
b,0( − 0)2

(
ãb,0
ab,0

(1+ )−
(
1+ 1

2
)
+8 2 ¯ 2 2

b,0

)2

[(
1−

ãb,0
ab,0

+ ln
(

d0
c b,0

)(
1
2
−
ãb,0
ab,0

))2

+
1
2
1
a2b,0

2
n
Es

(
1+

1
2
ln

(
d0
c b,0

))2

+
1
a2b,0

2
n
Es
2 2 ¯ 2 2

b,0ln2
(

d0
c b,0

)]
.

(13)

It is worthwhile to observe that when = 0, i.e., for the per-
fect PLE, the error variance in (13) becomes zero. This re-
sult is inconsistent with the intuition, since the error variance
should reduce to (see [9])

Enb(t)
{(
ˆb,ML( 0)− b,0

)2} =
1

SNRa2b,0

(
8 2 ¯ 2+

2
b

2 2
b,0

) ,

(14)
where SNR = Es

2n
is the transmitted signal-to-noise ratio

(SNR). Therefore, the error variance of the ML estimator
calculated by the Friedlander method, i.e., (13), cannot well
predict the error performance. The major reason of the inac-
curate prediction by the Friedlander method is that the Tay-
lor expansion in [7, eq. (19)] has missed the derivative term

b
fML( b| ) at the true values of 0 and b,0. Next we cor-

rect the expansion based on the Taylor series.

3.2 Theoretical Error Performance Based on the First-
Order Taylor Series

By using the first-order Taylor series of the
b
fML( b| ) in

two variables around the true values b,0 and 0, the theoreti-
cal expression of the error between the estimated and the true
ToAs can be written as

ˆb,ML( )− b,0 = −

b
fML( b| )

∣∣∣
b= b,0

+( − 0)Enb(t)
{

2

b
fML( b| )

∣∣∣
b= b,0

}

Enb(t)
{

2

b b
fML( b| )

∣∣∣
b= b,0

} .

(15)

Substituting (7) and the expectation of (8) and (9) with re-
spect to the noise nb(t) into (15), we obtain the error be-
tween the estimated and the true values of the ToA (see [10,

eq. (5.3.5)])

ˆb,ML( )− b,0 =
[
1
b,0

(
Esãb,0+Esab,0+ ns,0

)
− 1

b,0
( − 0)Es(ab,0− ãb,0)

+2 ˙ns,0+
1
b,0

( − 0) ln
(

d0
c b,0

)
Es

(
ãb,0−

1
2
ab,0

)]



 1
1
2
b,0

(1+ )Esãb,0− 1
2
b,0

(
1+ 1

2
)
Esab,0+8 2 ¯ 2Esab,0



 .

(16)

3.2.1 ML Estimator Bias by the First-Order Taylor Series
Taking the expectation of (16), we obtain the bias of the
ML estimation under the imperfect PLE as follows (see [10,
eq. (5.3.6)])

Enb(t)
{
ˆb,ML( )− b,0

}
= −

(2 − 0)
(
ab,0− ãb,0

)
+ ( − 0) ln

(
d0
c b,0

)( 1
2ab,0− ãb,0

)

8 2 ¯ 2 2
b,0ab,0−

(
(ab,0− ãb,0)+ 2

( 1
2ab,0− ãb,0

)) b,0.

(17)

3.2.2 ML Estimator Error Variance by the First-Order Tay-
lor Series
Using the error expression derived from the Taylor expansion
in (16), we obtain the error variance of the ML estimation
under the imperfect PLE as follows (see [10, eq. (5.3.16)])

Enb(t)
{
( ˆb,ML( )− b,0)2

}
=

((
(2 − 0)

(
1−

ãb,0
ab,0

)
+ ( − 0)

ln
(

d0
c b,0

)(
1
2
−
ãb,0
ab,0

))2
+

1
a2b,0

2
n
Es

(
1
2

2+8 2 ¯ 2 2
b,0

))

(
ãb,0
ab,0

(1+ )−
(
1+

1
2

)
+8 2 ¯ 2 2

b,0

)−2
2
b,0.

(18)

For the perfect PLE, the error variance in (18) reduces to
(14), and therefore, (18) gives a consistent RMSE. The rea-
son why the method based on the Taylor series expansion
is able to better characterize the error performance than the
Friedlander’s method is that in the Taylor series expansion
method, the term

b
fML( b| ) is taken into account. This

additional term fulfils the expansion of the first-order Tay-
lor series in [7, eq. (19)], thus leading to higher prediction
accuracy.

4. NUMERICAL EXAMPLES

In classical impulse radio ultrawideband systems, one of the
most considered waveforms is the second-derivative Gaus-
sian pulse, which can be expressed as (see, e.g., [11]) p(t) =(
1−4

(
t
p

)2)
e−2

(
t
p

)2
where t > 0, p is the pulse-

shaping factor chosen to adjust the pulse width Tp. Let us
consider the transmitted signal as s(t) = p

(
t− 1

2Tp
)
; t > 0,
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whose effective bandwidth and effective absolute central fre-
quency are given by (see [10, eq. (3.2.2) and eq. (3.3.5)])

¯ =
1
2

√∫
−

2|S( )|2d
∫
− |S( )|2d =

1
p

√
5
2

, (19a)

f̄abs =
1
2

∫
− | ||S( )|2d
∫
− |S( )|2d =

1
p

16
3

, (19b)

where is the angular frequency, and S( ) is the Fourier
transform of s(t). Note that f̄abs is considered as an approxi-
mation of the central frequency in (3). Substituting the above
parameters, i.e., (19a) and (19b), into the expressions of the
biases and the variances given by the Friedlander and Taylor
expansion methods, we obtain the theoretical error perfor-
mance of the ML estimator under the imperfect PLE for the
second derivative of the Gaussian pulse as the transmitted
signal.

Fig. 1 shows the bias and the RMSE of the position esti-
mate as a function of the received SNR defined by SNRRx =
a2bEs
2n
. In the upper sub-figure, the bias expressions in (12)

and (17) depend on neither the signal energy E s nor the noise
variance 2

n . As the SNR is varied, the bias is invariant
to the SNR. For SNR = 20 or 25 dB, the simulation has
a zigzag tendency, because the derived bias is accurate for
only asymptotic region, i.e., for large SNR. In the lower sub-
figure, the ML and MC estimates approach their asymptotic
error variances when the SNR is large. In the threshold re-
gion from 0 to 10 dB, i.e., in the transition region where the
error falls quickly, and for a small PLE error, the ML esti-
mator presents lower RMSE than the MC estimator even in
the presence of the imperfect PLE. However, in the asymp-
totic region, especially for the SNR larger than 35 dB, the
MC estimator and the ML estimator with the perfect PLE
outperform the ML estimator under the imperfect PLE. This
is because although the RMSE decreases with the increase
in the received SNR, the bias of the ML estimator under the
imperfect PLE shown in the upper sub-figure does not de-
crease with the increase in the received SNR. Therefore, the
bias dominates the RMSE at high SNR. Although the RMSE
on the order of 0.01 mm for the received SNR to be from 35
to 50 dB seems to be impractical. The figure is used just to
indicate the merits of the approach proposed in this paper.

Moreover, the bias and the RMSE of the position esti-
mate as a function oft the PLE error = − 0 are shown in
Fig. 2. It can be seen from both sub-figures that, the Taylor
expansion analysis presents higher accuracy in the perfor-
mance prediction than the Friedlander analysis method. The
plot of the theoretical ML estimator under the imperfect PLE
actually changes with the PLE error. A zoomed version of
this RMSE figure is available in [10, Fig. 5.17]. This un-
zoomed version is chosen, because the curve of ”ML Analy-
sis: Friedlander” still appears in the figure. The disagreement
between the bias analysis and the simulation results mainly
results from the two-dimentional Taylor series truncation.

5. CONCLUSION
We have derived the asymptotic error performance of the
ML estimator under the imperfect PLE. It is pointed out that
a previous method provides inaccurate performance predic-
tion and a new method based on the Taylor series expansion,

which can better capture the error performance of the ML
estimator than the conventional method, is presented. More-
over, one can observe from the simulation results that in the
presence of the PLE error, the ML estimator outperforms the
MC estimator for the small PLE error in the threshold region.
However, in the asymptotic region the MC estimator and the
ML estimator with the perfect PLE outperform the ML esti-
mator under the imperfect PLE.
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Figure 1: Bias and RMSE of the position estimate as a func-
tion of the received SNR SNRRx for the imperfect PLE,
0 = 2, = 0.5, db = 3 m, ¯ = 3.1007×109 Hz, sampling
time= 0.01 ps, andNR = 1,000 independent runs. A zoomed
version of the RMSE in the lower figure is available in [10,
Fig. 5.13].
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Figure 2: Bias and RMSE of the position estimate as a func-
tion of the PLE error for the imperfect PLE, 0 = 2,
SNRRx = 20 dB, db = 3 m, ¯ = 3.1007×109 Hz, sampling
time= 0.01 ps, andNR = 5,000 independent runs. A zoomed
version of the RMSE in the lower figure is available in [10,
Fig. 5.17].
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