
Web-based Interactive Free-Viewpoint Streaming

A framework for high quality interactive free viewpoint navigation

Matthias Ueberheide1, Felix Klose1, Tilak Varisetty2,
Markus Fidler2 and Marcus Magnor1

1TU Braunschweig, Germany 2Leibniz Universität Hannover, Germany
{ueberheide,klose,magnor}@cg.cs.tu-bs.de,

{tilak.varisetty,markus.fidler}@ikt.uni-hannover.de

ABSTRACT
Recent advances in free-viewpoint rendering techniques as
well as the continued improvements of the internet network
infrastructure open the door for challenging new applica-
tions. In this paper, we present a framework for interac-
tive free-viewpoint streaming with open standards and soft-
ware. Network bandwidth, encoding strategy as well as
codec support for open source browsers are key constraints
to be considered for our interactive streaming applications.
Our framework is capable of real-time server-side rendering
and interactively streaming the output by means of open
source streaming. To enable viewer interaction with the free-
viewpoint video rendering back-end in a standard browser,
user events are captured with Javascript and transmitted
using WebSockets. The rendered video is streamed to the
browser using the FFmpeg free software project. This pa-
per discusses the applicability of open source streaming and
presents timing measurements for video-frame transmission
over network.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation-
Miscellaneous; I.3.8 [Computer Graphics]: Applications;
H.4 [Multimedia Transport and Delivery]: Miscella-
neous

General Terms
Network, Streaming, Interactive, Free-Viewpoint Video

Keywords
Viewpoint; HTML5; Real-time streaming

1. INTRODUCTION
With the success of video platforms such as YouTube,

video-on-demand services as Netflix and the increase in live

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MM’15, October 26–30, 2015, Brisbane, Australia.
c© 2015 ACM. ISBN 978-1-4503-3459-4/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2733373.2806394.

streaming platforms such as Twitch, the internet infrastruc-
ture becomes ready for more involved media applications.
Recently, interactive gaming services that enable server-side
rendering of complex game graphics to thin-client consoles
at home, started to appear. However, it is still extremely
challenging to stream interactive applications due to the in-
herent constraints on low latency, network bandwidth and
the requirement for real-time encoding. Existing frameworks
and commercial products that enable applications such as
Twitch, Gaikai, Sony Playstation NOW and Skype rely heav-
ily on proprietary software and video codecs. In contrast,
our goal in this paper is to evaluate and show the possibil-
ity of creating an interactive free-viewpoint experience using
open standards and software. The client application runs
completely inside a HTML5 compatible webbrowser and re-
quires no further addons or plugins.

The main challenge in creating interactive video streaming
applications, where the video content is directly controlled
by the viewer, is keeping low latency response times. We
explore different aspects of real-time, low latency stream-
ing while only relying on open source APIs as backend and
widely available consumer browsers as frontend.

Free-viewpoint video applications enable the viewer to in-
teract with the video by freeing the camera from its usually
fixed position and let the user explore the video [7]. The
challenge in synthesizing new views from preprocessed data
in real-time is the high volume of data required to represent
the entire scene. Streaming these large volumes of input
data to a client side renderer is impractical. Our system
avoids high bandwidth data transfer by combining server-
side rendering with low latency streaming.

We present an approach for image-based free-viewpoint
rendering based on the work by Lipski et al. [2] and its im-
plementation in a real-time rendering and real-world net-
working environment. We employ only open standardized
protocols and open source codecs. This enables interactive
video exploration in standard consumer browsers. The aim
of this work is to demonstrate an interactive streaming appli-
cation and implement a measurement technique to evaluate
the performance of that application. The first contribution
of this paper is to demonstrate an image based real time
capable interactive free-viewpoint system. The second con-
tribution of this paper is to give an overview of the challenges
in real-time streaming using only open source software and
provide results on the overall system performance in terms
of delay. This work reflects the network characteristics of
an interactive rendering application for Local Area Network
environments.

1031

Figure 1: (left),(right) Two input images and (mid-
dle) the generated in between view.

2. RELATED WORK
Video streaming over the internet can be categorized into

two groups: VOD (video on demand) and live streaming [9].
One of the main differences is that for VOD it is possible
for the client to buffer data to guarantee an uninterrupted
playback while live streaming ideally requires no buffering
at all. This requirement can be relaxed for live broadcasts
that do not involve an interactive component, such as live
sporting events. For interactive live streaming however, the
video frames that are shown are generated in real-time and
their content is influenced directly by the user. Well-known
interactive systems are teleconferencing applications such as
Skype, remote desktop sharing, and recently streamed gam-
ing platforms such as Gaikai, Steam Homestreaming or Sony
Playstation NOW. All of the named methods are only avail-
able commercially and heavily rely on proprietary software
for encoding and display, which makes it difficult to use them
in an open research environment.

Transmitting geometry and texture data required for a
client to interactively render and show the information can
be compressed efficiently for transmission [12]. However,
this is mostly focused on sending static objects and scenes
and is not suitable for continuous transmission of dynamic
sequences.

Current research into interactive multi-view streaming [5,
13, 14] focuses on optimizing the encoding, storage and
bandwidth requirements for transmitting and switching be-
tween multiple streams. The authors [1] have proposed a
framework for streaming 3D objects to HTML5 browser
without plugins. Our work focuses on streaming a single
video generated interactively on the render-server side from
multiple input videos of a scene containing arbitrary motion.

Shi et al. [10] propose a low latency remote rendering sys-
tem that implements the real-time streaming of 3D data over
the network to a mobile client.

Creating new viewpoints from multiple input streams is
often referred to as free-viewpoint rendering. In the last
years impressive results were created by depth-based ren-
dering techniques such as [15] as well as purely image-based
methods [3] that do not require explicit geometry. We base
our free-viewpoint rendering on a hybrid approach presented
recently by Lipski et al. [2] combining the strength of image-
based and depth-based methods. While their rendering re-
sults have the high quality required, their system is not
capable of creating interactive viewpoint changes in real-
time. Video exploration of performances captured by mul-
tiple cameras has been done by Miller et al. [7]. They base
view interpolation on proxy geometry from visual hulls of
the captured object. First research into general scene inter-
active free-viewpoint video has been done by Meyer et al. [6],
creating a desktop application for interactive free-viewpoint
exploration.

To the best of our knowledge, the recent work does not
illustrate the methodology for accurately mapping the video
frame packets from the server to the client. We employ only
open standardized protocols and open source codec imple-
mentations like the HTML5 video element, the Ogg Theora
video codec and the WebSockets framework for user event
transmission.

3. RENDERING PIPELINE
Image-based rendering relies directly on images to inter-

polate new views instead of modelling and subesequently
rendering textured 3D geometry. For a new viewpoint of the
scene a subset of the input frames is selected. These nearby
frames are warped to the position of the desired view based
on dense image correspondences and blended together for a
convincing new virtual view [3]. The image correspondences
are obtained automatically using a high quality image cor-
respondence estimation method [4]. Dense correspondences
additionally allow the computation of per pixel depth maps,
with visible imperfections from incorrect correspondences.
The hybrid approach by Lipski et al. [2] can be used to
render consistent views despite the imperfections in scene
depth. In this section we will give a short overview of the hy-
brid approach. The amount of data required by the renderer
is discussed to motivate the use of server-side rendering.

3.1 Hybrid Approach
The hybrid free-viewpoint video approach relies on addi-

tionally available depth maps and uses 2D image correspon-
dences to apply a warping in 3D space.

For every frame A the per-pixel depth DA is known. Using
the intrinsic parameters (e.g. focal length) and the extrin-
sic parameters as camera matrix MA, each pixel X can be
projected to its 3D space position x,

x = M−1
A

(
rf (X)

||rf (X)||DA(X)

)
, (1)

where rf (X) denotes the ray through pixel X.
The image-space correspondence maps a pixel in one frame

to a pixel position in a second frame. Since the 3D positions
for both is known from the respective depth maps and cam-
era positions, a 3D space mapping can be computed. Using
this 3D mapping allows the warping and blending of images
in 3D. The new 3D position x′ of a pixel x in frame A, can be
computed from the its 3D correspondence WAB from source
frame A to target frame B.

x′ = x + c ·WAB(X). (2)

The warp coefficient c determines how far the pixels from
frame A are warped towards their positions in B. It can
be obtained by an orthogonal projection of the virtual view
position onto the source to target vector. The warps are
applied and the 3D pixels reprojected respecting their depth.
To allow for smooth blending between multiple views soft z-
buffering is applied. For a more detailed description of the
image synthesis process we refer to [2].

3.2 Bandwidth
Image-based free-viewpoint video requires a huge amount

of data to be loaded for each rendered frame. In addition
to the image color and depth data for all frames, the dense
2D image correspondences have to be stored for each image

1032

pair that shall be used for rendering later on. Assuming
for one camera to have a neighboring camera above, be-
low, to the left and to the right results in four image pairs
per input frame. To enable temporal interpolation as well,
we add the correspondences to the next frame in the same
camera and therefore require five correspondence maps per
input frame. The correspondence map is saved as a two-
channel image with two bytes per channel resulting in ap-
proximately 16.5MB per warp for full HD images. Although
that includes source and target images, which can be shared
between warps with the same source or target, in the worst
case the warps do not share any images. A small scene with
10 cameras, 100 frames per camera and dense correspon-
dences from each frame to five of its neighbors can reach
up to 80GB. Streaming this amount of data to the client on
demand is impractical with current bandwidth limitations
for network traffic. Rendering the scene on a server and just
transmitting the video, however, reduces the required band-
width and allows even small devices to present interactive
free viewpoint video.

Rendering the free viewpoint video in real-time on the
server remains a challenging task as the full scene does not
fit into GPU or main memory. Scheduling is required to
decide which parts of the data should be available in RAM
or GPU memory and which parts of data should remain on
disk. The typical exploration of free viewpoint video utilizes
continuous camera paths which leads to continuous access
to the camera data. Thus the current position is used as a
predictor to preload images and correspondences from sur-
rounding cameras. This applies for the frame and warp data;
the intrinsic and extrinsic data are uploaded on demand per
warp computation but can remain in main memory as their
memory footprint is small.

Our rendering application is able to produce 30fps on a
computer with an Intel i7 CPU 3.2GHz, a NVidia GeForce
GTX TITAN Black GPU and 12GB RAM. However, the
client side framerate is mostly limited by network bandwidth
and buffering.

4. NETWORK PIPELINE

Figure 2: System overview

We developed a framework for streaming an image from
the OpenGL-based renderer to a webbrowser-based client
using the open source software ffmpeg and ffserver for en-
coding and streaming. The video stream is rendered in the
browser using the HTML5 video element and WebSockets
are used for the browsers communication with the server-
side rendering application [8]. This allows us to perform our
experiments in a Firefox browser without any modifications

or plugins on the client side. In our experiments we run
ffmpeg and ffserver in version 2.1, on the client side we per-
formed our tests using Firefox 32.0 and Google Chrome 42.0.

Figure 2 illustrates the overall experimental set up. The
OpenGL based renderer produces raw images which are trans-
fered in memory to ffmpeg through the image2pipe interface.
The very low overhead BMP format structure is used for the
RGB frames before they are encoded in the ffm format used
by the ffserver internally. The encoded stream is streamed
via ffserver to the Firefox browser when the client connects
via HTML5 video element to the ffserver feed. To avoid
encoding delay, B-frames are disabled for the encoder. The
user interaction, such as mouse and key events, is captured
in Javascript and sent to the server using the WebSocket
connection.

We rely completely on TCP/HTML streaming which has
the advantage that TCP streaming over port 80 will not be
blocked by typical firewall configurations. Streaming over
TCP has other challenges in the form of the congestion con-
trol [11] and thus delays have to be expected.

To measure the delay introduced by every part of the
pipeline each video frame is annotated with epoch times
which are logged at each measurement point at the begin-
ning of the components (see Figure 2).

The first measurement point M1 lies directly after the
OpenGL renderer and before the encode image preprocess-
ing. At the input of the ffm encoder component the frames
and their timestamps are logged again at M2. The ffm en-
coded data stream is handed to the ffserver which has to de-
code the ffm format again after the third measurement point
M3. Before the data is sent to the client via the TCP socket
the delay is measured again at M4. Finally, the transmit-
ted TCP packets are logged with the network analysis tool
Wireshark on the client side. By logging the position from
the OGG header on both, the sender and receiver side, each
received packet can be matched to the timestamp when this
particular frame was encoded. Comparing the sender side
timestamps against the timestamps of the matching incom-
ming packets on the client side, measured at measurement
point M5, allows a fine granular delay measurement. To
ensure the accuracy of this measurment the sytem clock of
the client and server have been synchronized using NTP.

5. RESULTS
For the evaluation of our pipeline we measure the delay

between the measurement points (see Figure 2). The ex-
periment is performed over 100 Mbps link capacity over the
LAN. Table 1 shows the average delay measured over 1000
frames per run.

The image preprocessing delay is calculated from M1 to
M2 which includes the required image preprocessing (e.g.
changes in color format for optimal encoding). Similarly the
delay of the ffm encoder is measured from M2 to M3. The
delay of ffm decoder includes the reinterpretation of the ffm
container by the ffserver from M3 to M4. As buffering delay
we measure time spent waiting for the next frame to fully
load. The total delay is computed from M1 to M5.

We can observe that the delays remain constant over time,
when we tested streaming large numbers of frames. However
the buffered frames in the pipeline still constitute a signifi-
cant part of the observable delay. Each individual part of the
encoding and streaming pipeline keeps only approximately
one frame in their buffers. Over the framework these sum

1033

Run Nr

Img
proc.
delay
[ms]

ffm
en-
coder
[ms]

ffm
de-
coder
[ms]

Buffer
delay
[ms]

Total
delay
[ms]

1 21 37 2 167 229
2 20 37 2 163 224
3 20 38 3 164 226
4 21 37 2 166 228
5 21 37 2 168 227
6 21 38 2 167 230
7 21 37 3 168 230
8 22 37 3 170 234
9 22 37 3 169 233
10 21 38 2 170 233

Table 1: Observed delay in our test system and net-
work environment. Delays are average numbers over
1000 frames of video streamed in each test run

up to a total of 4-6 frames. At 30 frames per second each
have a time impact of 33 ms for a total of the 165 ms which
can be seen in Table 1. In comparison to the average buffer-
ing delay the delays introduced by decoding and encoding
appear insignificant. The total delay through the complete
pipeline, beginning with a rendered frame to the frame being
shown in the browser, is given in the last column on table
1. While still allowing an interactive experience, much lower
values are desired for realtime interaction.

6. CONCLUSION AND FUTURE WORK
We have presented a framework for real-time streaming of

free-viewpoint renderings which relies solely on open stan-
dards and software. Our approach requires only a standard
web browser which has to support the HTML5 video element
for streaming the video data. A methodology to calculate
the one way delay from the server to the client over a Local
Area Network on a per frame basis has been demonstrated
with insights into the application performance. In the fu-
ture further investigation could be done on the buffering de-
lays of the server component and optimizing the application
performance in terms of delays to improve the interactive
experience.

The recently standardized WebRTC is a promising alter-
native to the TCP/HTML video streams and we will investi-
gate its application in open source based interactive stream-
ing in the future.

7. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Union’s Seventh Framework Programme
FP7/2007-2013 under grant agreement no. 256941, Reality
CG, and European Research Council StG 306644 for the
project UnIQue.

8. REFERENCES
[1] K. Kapetanakis, S. Panagiotakis, and A. G. Malamos.

Html5 and websockets; challenges in network 3d
collaboration. In Proc. 17th Panhellenic Conference
on Informatics, PCI ’13, pages 33–38, New York, NY,
USA, 2013. ACM.

[2] C. Lipski, F. Klose, and M. Magnor. Correspondence
and depth-image based rendering: a hybrid approach
for free-viewpoint video. IEEE Trans. Circuits and
Systems for Video Technology, 24(6):942–951, June
2014.

[3] C. Lipski, C. Linz, K. Berger, A. Sellent, and
M. Magnor. Virtual video camera: Image-based
viewpoint navigation through space and time.
Computer Graphics Forum, 29(8):2555–2568, Dec.
2010.

[4] C. Lipski, C. Linz, T. Neumann, M. Wacker, and
M. Magnor. High resolution image correspondences for
video post-production. Journal of Virtual Reality and
Broadcasting, 9.2012(8):1–12, Dec. 2012.

[5] P. Merkle, A. Smolic, K. Muller, and T. Wiegand.
Multi-view video plus depth representation and
coding. In Image Processing, 2007. ICIP 2007. IEEE
International Conference on, volume 1, pages I–201.
IEEE, 2007.

[6] B. Meyer, C. Lipski, B. Scholz, and M. Magnor.
Real-time free-viewpoint navigation from compressed
multi-video recordings. In Proc. 3D Data Processing,
Visualization and Transmission, pages 1–6, May 2010.

[7] G. Miller, A. Hilton, and J. Starck. Interactive
free-viewpoint video. In IEE European Conf. on
Visual Media Production, pages 50–59, 2005.

[8] D. Puranik, D. Feiock, and J. Hill. Real-time
monitoring using ajax and websockets. In Engineering
of Computer Based Systems (ECBS), 2013 20th IEEE
International Conference and Workshops on the, pages
110–118, April 2013.

[9] A. Rao, Yeon-sup, Lim-Chadi, B. Arnaud, L. D.
Towsley, and W. Dabbous. Network characteristics of
video streaming traffic. In Network Experiments and
Technologies, ACMCoNEXT 2011 7th International
Conference on, December 2011.

[10] S. Shi. A low latency remote rendering system for
interactive mobile graphics. PhD thesis, University of
Illinois at Urbana-Champaign, 2012.

[11] H.-P. Shiang and M. van der Schaar. A quality-centric
tcp-friendly congestion control for multimedia
transmission. Multimedia, IEEE Transactions on,
14(3):896–909, June 2012.

[12] J. Sutter, K. Sons, and P. Slusallek. Blast: A binary
large structured transmission format for the web. In
Proc. 9th International ACM Conference on 3D Web
Technologies, Web3D ’14, pages 45–52, New York, NY,
USA, 2014. ACM.

[13] X. Xiu, G. Cheung, and J. Liang. Frame structure
optimization for interactive multiview video streaming
with bounded network delay. In Image Processing
(ICIP), 2011 18th IEEE International Conference on,
pages 593–596, Sept 2011.

[14] G. C. Zhi Liu and Y. Ji. Optimizing distributed source
coding for interactive multiview video streaming over
lossy networks. Circuits and Systems for Video
Technology, IEEE Transactions on, 23(10):1781–1794,
Oct 2013.

[15] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. A. J.
Winder, and R. Szeliski. High-quality video view
interpolation using a layered representation. ACM
Trans. Graph., 23(3):600–608, 2004.

1034

