
Benchmarking and Simulating the Fundamental

Scaling Behaviors of a MapReduce Engine

Brenton Walker

Institut für Kommunikationstechnik (IKT)

Leibniz Universität Hannover

Hannover, Germany

brenton.walker@ikt.uni-hannover.de

Abstract—We present MRSperf, a tool for running simple
stochastically-controlled streams of jobs on a Spark cluster,
and forkulator, a modular simulator for models of parallel
processing. While it is common for networking researchers to
build models and experiments on top of simple stochastically well-
defined building blocks, research and development in MapReduce
systems tends to be more divergent, either focusing on emulating
realistic but very complex applications, or on theoretical models
that may be far from accurate representations of real MapReduce
system architecture. The purpose of these tools was originally to
validate and guide the development of theoretical models in Net-
work Calculus, but we believe the tools have more general utility.
We use these tools to compare the popular Fork-Join model to the
Non-Idling Single-Queue model, which more accurately reflects
the behavior of the default task manager in Apache Spark, and
propose future directions for their development.

I. INTRODUCTION

When researches experiment with, or simulate communi-

cations networks for the purpose of developing or validating

models, they usually start with models of transmissions, de-

lays, and packet losses that are non-deterministic, but still have

some well-defined statistical properties. For example inter-

packet arrival times may be modeled with an exponential or

Weibull distribution and packet losses may be modeled as

a two-state Markov process. Experimenting with these types

of models is supported in simulators like ns–3 [1], network

emulators such as Emulab [2], and commercial link emulators

such as PacketStorm.

Experimentation and development on parallel computing

systems, on the other hand, has seen more divergent focii. On

the systems-oriented end we see benchmarking suites such

as BigPetStore and SparkBench [3], [4] and the unit and

integration testing tools included with MR engines like Apache

Spark [5]. These benchmarking suites try to give a dataset

and workloads representative of an operational cluster. For

the purposes of evaluating models of parallel computation,

however, the results are dauntingly complex. On the theoretical

end there are a variety of models meant to capture the syn-

chronization constraint of parallel processing, and seemingly

small differences in the models can lead to drastically different

scaling behavior. These simple models are usually simulated,

but to our knowledge no one has made a comparison to the

behavior of a real MapReduce system. We find a similar focus

in MapReduce simulators, such as MRPerf [6] and MRSim [7]

which aim to simulate the complex workloads a cluster might

encounter in the greatest detail possible.

Our work runs in a different direction than most systems-

oriented benchmarking work, which aims to capture diverse

and operationally realistic system behavior, and most theoret-

ical work, which focuses more on general models. Therefore

we include some motivational argument for our research.

Figure 1 shows schematics and scaling behavior for three

important models of parallel processing, Split-Merge (SM),

Fork-Join (FJ), and Non-Idling Single-Queue (NISQ). All

three appear to be reasonable models of parallel computation,

but their scaling behavior is drastically different. The first and

last models, SM and NISQ, include results from experiments

on an Apache Spark cluster. This demonstrates that these two

models of computation are achievable on such a cluster, and

that two programs running on the same cluster, doing the

same type of computation, can scale completely differently.

The computation being done in this case has negligible I/O

requirements, so behavior of the program gives a baseline for

how programs of this structure can scale. It can also work in

the opposite direction; for example, observing scaling behavior

matching FJ in a program could help a programmer to identify

processing constraints in their program. So while operationally

realistic benchmarking suites are essential for debugging and

optimizing programs and system parameters, a set of more

basic, fundamental, and statistically controllable workloads is

needed to fully understand the properties of MR systems and

programs and their design points.

In this paper we present forkulator [8], a modular

simulator for parallel processing models, and MRSperf [9], a

loading tool for Apache Spark that submits jobs and tasks with

statistical properties and constraints matching the assumptions

of many theoretical models. Both tools were developed to

validate and winnow the results in [10], but we see a lot

of potential future uses, and consider both to be works-in-

progress.

A. Models of Parallel Processing

The most studied model we see is the Fork-Join (FJ) model

shown in the center of figure 1. Incoming jobs are divided into

k tasks which are queued at k parallel workers, and serviced

as the workers become available. Besides parallel computingISBN 978-3-901882-94-4 c© 2017 IFIP

job n

1

2

k

split merge

...

...

task 1

task k

...

1

...

2

k

fork join

job n

task 1

task k

...

...

1

...

2

k

fork join

job n tasks 1...k

job n, n-1

0 2 4 6 8 10 12 14 16 18

k

10

20

50

100

200

500

1000

s
o

jo
u

rn
 t

im
e

 1
0

- 3
 q

u
a

n
ti
le

bound

simulation

spark experiment

optimal task partition

0 10 20 30 40 50 60

k

10

15

20

25

30

35

40

s
o
jo

u
rn

 t
im

e
 1

0
-3

 q
u
a
n
ti
le

bound

simulation

optimal task partition

0 10 20 30 40 50 60

k

10

15

20

25

30

35

40

s
o
jo

u
rn

 t
im

e
 1

0
-3

 q
u
a
n
ti
le

bound

simulation

spark experiment

optimal task partition

task number

ti
m

e

job arrival

service start (job & task)

task completion

job depart

task number

ti
m

e

job arrival

service start (job)

service start (task)

task completion

job depart

task number

ti
m

e

job arrival

service start (job)

service start (task)

task completion

job depart

Split-Merge (SM) Fork-Join (FJ) Non-Idling Single-Queue (NISQ)

Fig. 1. Three models of parallel systems. Their schematics, 10
−3 quantile of their sojourn times for increasing numbers of workers (k), and example

experiment paths. Time units are in seconds.

systems, this model is cited as capturing the parallelism and

synchronization constraint of such diverse real-world systems

as supply chain networks, multipath routing, RAID storage,

and military airfield coordination [11]. Since tasks are queued

at the individual workers, it is possible for a worker to sit

idle while tasks are waiting at other workers. However this

property also guarantees that jobs must depart in the order

they arrive; they cannot overtake each other.

A closed form solution for the mean sojourn time of an

FJ queue is only known for k = 2 with exponential arrivals

and service times [12], [13]. A great deal of research has

been done to approximate and find bounds for FJ queues in

more general settings [14], [15], [16], [17], [18], [19], [20].

The figure also shows the scaling behavior of the sojourn

time for the FJ model for varying degrees of parallelism.

The plot shows results from simulation and a bound based

on network calculus [21], [22]. In the case of exponential

arrivals and service times, the quantiles of the sojourn time

grow logarithmically with k. For comparison, the figure also

includes simulated sojourn time data for jobs with an optimal

task division. That is, jobs with the same distribution of

total job size, but with all tasks equally sized. Under these

conditions all three models behave the same.

We have not found a way to make Spark behave like a Fork-

Join queue. It seems that the Fork-Join model makes better

sense in a context like multipath routing, where, once a packet

is sent along a route it cannot be recalled, and the delay along

each route is not fungible. In the case of Spark, the default

task manager holds a queue of tasks, and assigns them to the

cores on the workers as they become available. The tasks are

not restricted to any particular worker. We call this the Non-

Idling Single-Queue (NISQ) model. The right side of figure 1

shows a schematic of this model and a plot of its sojourn time

for increasing degrees of parallelism. We see a large initial

benefit from load balancing, and then a gradual increase in

sojourn times because of the synchronization constraint. The

NISQ model was studied in [23] and more recently the bound

shown in the figure was derived using network calculus [10].

The left side of figure 1 shows a Split-Merge (SM) model.

Some authors refer to this as a "blocking" Fork-Join. In this

model each job must wait for all of the tasks from the previous

job to finish before it can begin service. This means that

if there is a single straggler task, all the workers must sit

idle waiting for it to finish. When we have exponential task

service times, this model will be equivalent to a single queue

whose service times are the maximum order statistic of k
exponentials. The dramatic increase in sojourn time with k
is apparent from the figure.

A (im)properly implemented Spark program can behave

like a Split-Merge system. Sojourn time data from such a

Spark program, which is doing the same computations as the

NISQ example, with jobs arriving at less than half the rate

of the NISQ example, are shown in figure 1. Also plotted

are simulation results and a bound derived using network

calculus [21].

The queuing of programs in a cluster may also behave like

a Split-Merge queue; a driver program places a number of

executors on the workers, and those executors block a certain

number of cores, whether they are being used or not. Clearly a

system that behaves like an SM queue is very sensitive to intra-

job task size variation and should be avoided when possible.

II. MRSPERF SPARK EXPERIMENTAL TOOLS

MapReduce Spark Performance Tool, MRSperf, is a set

of tools designed to set up a Spark cluster and submit jobs

and tasks in a streaming context matching the assumptions

of queuing theoretic models of parallel systems. Some

key aspects that are different from normal operation of a

batch-style Spark program:

1. MRSperf executes as a single stream processing appli-

cation. When an application is submitted to a Spark cluster,

it claims a certain number of cores on a certain number of

workers by placing executors on the workers. These executors

are held for the duration of the application whether they

are being used or not1. The MRSPerf application claims a

configurable number, k, of cores and holds them for the entire

experiment. It then launches a separate thread for each job

as it arrives. The degree of parallelism (number of tasks per

job) is controlled by creating a trivial RDD with k slices

with parallelize(), and then running a map() on that

RDD. Finally an aggregate function such as collect()
or count() must be called on the result to force the job

execution. An example of an empty job is shown below.

def runEmptySlices(
spark:SparkContext,
numSlices: Int,
serviceTimes: List[Double],
jobId: Int): Long =

{
spark.parallelize(1 to numSlices, numSlices)
.map { i =>
val jobLength = serviceTimes(i-1)
val startTime =

java.lang.System.currentTimeMillis()
val targetStopTime = startTime +

1000*jobLength
while

(java.lang.System.currentTimeMillis()
< targetStopTime) {

val x = random * 2 - 1
val y = random * 2 - 1

}
val stopTime =

java.lang.System.currentTimeMillis()
1

}.count()
}

1In Spark there are some options for dynamic allocation and deallocation,
but this happens after idle times on the order of one minute, which is not
suitable for our purposes.

2. All executors are single-core. Normally each

worker node in a Spark cluster runs an instance of

org.apache.spark.deploy.worker.Worker which is allocated

most, or all, of the cores on the node. When an application

is submitted to the cluster it may place an executor on that

worker that claims up to the maximum number of cores. Each

executor runs inside a single JVM, and therefore the threads of

an executor can potentially benefit from their shared memory

space. In order to match the queuing theoretic model of

independent identical workers, MRSperf runs several workers

on each node, each in a separate Docker container, and each

allocated a single processor core. A Docker container [24] is

like a lightweight virtual machine, and are often compared to

OpenVZ [25] or FreeBSD Jails [26]. The docker container

specification we use is based on the docker containers used

for Spark integration testing.

For the Spark master to communicate with the workers

reliably, each worker needs to be allocated a distinct IP

address. In Docker the default is for the host to act as a

NAT for the container, which makes the container unreachable

from outside the host. Our solution is to configure the ethernet

interface of each worker node with enough IP addresses for

the number of workers it will host, and we run the Docker

containers in host mode. This means that the processes in each

container have full access to the network stack. Then we start

each worker in a separate container and configure them to

listen on distinct IP addresses.

3. The job arrival process is a configurable stochastic pro-

cess. MRSperf currently supports constant rate, exponential,

Erlang-k, and Weibull inter-arrival times. Jobs are forked from

the main thread of the driver program. The tool records the

time that each job is submitted, handles its inter-job processing

(compute next job arrival time, write out any data collected

from completed jobs, etc), and then sleeps for the remainder

of the inter-job time. This means there is effectively some

small minimum inter-job time because of the processing done

between job submissions, but it eliminates the potential long-

term drift in the process because of inter-job processing.

4. The task service times are configurable stochastic pro-

cesses. MRSperf supports the same process models as for

inter-arrival times. MRSperf also supports multi-stage jobs,

and in that case there is an option that tasks in subsequent

stages have either statistically independent, or identical service

times. During its run time each task simply generates random

points in the unit square (these lines of code originated from

the SparkPI example script), and repeatedly checks if its

desired runtime has been reached. The time resolution is 1

millisecond, the same as Spark’s logging.

MRSperf also includes some tools for setting up and launch-

ing Docker containers and processing Spark event logs to

produce job data in tabular form and experiment paths.

III. FORKULATOR PARALLEL SYSTEMS SIMULATOR

Forkulator is an event-driven simulator for a variety of

parallel processing models. The job inter-arrival and task

service times can be constant, exponential, Erlang-k, Weibull,

or variations on Gaussian distributions. There is also a service

time model that combines a service time distribution and a

random overhead (scheduler delay) distribution. Both inter-

arrival times and service times can be regulated through leaky

buckets. The simulator has a configurable sampling interval

and uses a warm-up period that is 10 ∗ sampling_interval ∗
number_of_stages. In our results we use an interval of 100

jobs. The simulator can also be run on a Spark cluster, in

which case each slice of the simulation initializes with its own

warm-up.

Forkulator supports several queue types. We have already

described the Split-Merge, Fork-Join, and NISQ models. It

also has implementations of (k, l) systems, where only l out

of k tasks need to complete for a job to depart, multi-stage

versions of the standard queue types, and “thinning” servers

where there are multiple servers, but each job must run on a

single server, and optionally be resequenced before departing.

The simulator outputs a log of the waiting, service, and so-

journ times of the sampled jobs. It can optionally also produce

a full experiment path containing arrival, start, completion, and

departure times for every task of every job.

IV. EXPERIMENTAL RESULTS

The simulation and Spark experiment results in figure 1

were generated with forkulator and MRSperf. The Fork-Join

and NISQ examples use an arrival rate of λ = 0.7 and a service

rate of µ = 1.0. The Split-Merge example has λ = 0.28 and

µ = 1.0. The simulation datapoints were each computed from

at least 109 jobs which were sampled at intervals of 100 jobs

to give at least 107 samples.

The Split-Merge and NISQ cases are the only ones with

data from both the simulator and Spark experiment. The Split-

Merge Spark datapoints are each computed from 172,800 jobs

sampled at intervals of 10 jobs. The NISQ Spark datapoints

are each computed from 604,800 jobs sampled at intervals

of 100 jobs. Error bars for quantiles are computed using the

method described in [27] section 2.2.2.

The SM and NISQ cases demonstrate good agreement

between the simulator and Spark. In these experiments we did

not try to simulate scheduler or task deserialization overhead,

so we see the sojourn times of Spark experiment tend to be

slightly larger than the simulated ones in the NISQ case. The

SM example diverges more. This is partly because even with

a load of λ/µ = 0.28, the system is close to being unstable

at k = 15 servers, and the system overhead makes a more

dramatic difference. The other reason is that to generate data

more quickly we ran the SM experiment with time units of

0.1sec versus 1.0sec for the NISQ case. Therefore the relative

overhead in the SM experiment was 10x higher.

The NISQ results in figure 1 also demonstrate the ability of

MRSperf to run larger-scale experiments. In this case we ran

15 workers on each of four 24-core servers for a total of 60

workers. We think this is a fairly effective way to realistically

experiment with MapReduce scaling behavior using a small

hardware setup.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

load (6/7)

0

0.2

0.4

0.6

0.8

1

1.2

m
e
a
n
 s

o
jo

u
rn

 t
im

e
 r

a
ti
o
 (

N
IS

Q
/F

J
)

shape 0.25

shape 0.5

shape 1.0

shape 2.0

shape 4.0

shape 8.0

Fig. 2. Ratio of mean sojourn times for Non-Idling Single-Queue to Fork-
Join at varying loads with exponential arrivals and Weibull service times with
different shape parameters, k = 16. We see that the more heavy-tailed the
service times are, the larger the difference between the two types of parallel
queues.

A. FJ vs NISQ With Weibull Service Times

Fork-Join is commonly put forward as a model for parallel

computation, and MapReduce in particular, but the Non-Idling

Single-Queue model is a more accurate representation of how

the default task manager works in Spark. We wanted to

investigate how much their performance differs under different

circumstances.

Under very low load, most jobs will arrive to an empty

system, and we expect these two models to perform the same.

Under heavy load we expect NISQ’s average performance to

be strictly better than FJ, but to what extent depends on the

arrival and service processes. We ran our experiments with

exponential arrivals and Weibull service times. By varying

the shape parameter of a Weibull distribution we can produce

service time distributions that range from heavy-tailed (shape

parameter < 1) to bell curve-shaped (shape parameter > 1).

This is compelling because some researchers have observed

a heavy-tailed distribution in certain aspects of task service

times, but in other situations we might expect the tasks within

a job to have highly-correlated service times. Based on an

idea in [28] we fix the mean service rate, and vary the shape

parameter. We can solve for the Weibull scale parameter that

gives us the desired mean rate.

Figure 2 shows the ratio of the mean sojourn times of the

FJ and NISQ systems at loads (λ/µ) ranging from 0.0001 to

0.98 and Weibull shape parameters 0.25, 0.5, 1.0, 2.0, 4.0,

and 8.0. All results are for k = 16 servers. The data were

generated by the forkulator simulator. Each data point is the

mean of 109 jobs sampled at intervals of 100 jobs.

As expected, the systems converge to the same mean at very

low load. For smaller shape parameters (heavy-tailed service

times) they diverge more quickly as the load increases. This

is expected; for small shape parameters we are likely to see

occasional tasks with abnormally long service times. In the

NISQ system this temporarily reduces the number of available

0 2 4 6 8 10 12 14 16 18

k = number of servers = number of tasks per job

2

5

10

20

50

100
m

e
a

n
 s

o
jo

u
rn

 t
im

e

Spark experiment

simulation

shape 0.25

shape 0.5

shape 1.0

shape 2.0

shape 4.0

Fig. 3. Mean sojourn times for NISQ server with exponential arrivals (λ =

0.7) and Weibull service times for varying degrees of parallelism.

workers, but since tasks are not tied to a particular worker, the

incoming jobs and tasks can “go around” the obstruction. In

the FJ case tasks are tied to particular workers, so a single

straggler task can hold up hundreds, or even thousands, of

jobs behind it.

For shape parameters greater than 1.0 the differences be-

tween the systems are much less. This is also expected. In the

extreme case, the work of each job would be equally divided

between its tasks, and both systems would behave identically.

From the figure we see that with shape parameter 8.0, as we

approach 100% load, NISQ performs only about 20% better

than FJ on average.

B. Scaling of NISQ with Weibull Service Times

Since we have not found a way to make Spark behave like a

Fork-Join system, the comparison in the previous section was

based only on simulation. However we can validate the NISQ

part of the result by comparing to Spark experiments. We

used MRSperf to run experiments with exponential job arrivals

and Weibull service times with expected rates controlled as in

section IV-A.

Figure 3 shows mean service times for simulation and the

real Spark system for k ∈ {1, 2, 3, 4, 5, 7, 10, 13, 15}. In these

experiments we again used time units of 0.1sec, so relative

overhead is a non-trivial additive factor in the service times

of the Spark experiment. The error bars are standard errors.

Each Spark experiment ran 72,000 jobs, and sampled every

10 jobs. Note that the y-axis in the figure is logarithmic.

As expected the Spark experimental results have slightly

larger sojourn times than the simulated results, but the dif-

ference appears to be additively consistent and diminishes

slightly as k increases. For shape parameters greater than 1.0
the service times become closer and closer to deterministic,

and this is reflected by a reduction in the mean sojourn times,

and also in flatter scaling behavior. Interestingly, for shape

parameters less than 1.0, the mean sojourn times decrease

between k = 1 to k = 2, but for shape parameters greater

task number

ti
m

e

job arrival

job departure

first stage start

final stage finish

task stage boundaries

(a) Synchronization point between stages.

task number

ti
m

e

job arrival

job departure

first stage start

final stage finish

task stage boundaries

(b) Pipelined tasks.

Fig. 4. Example experiment paths for two modes of multi-staged experiments
run on a Spark system. k = 10 tasks per job.

than 1.0 we see a small trend in the opposite direction. We

expect that the increase in sojourn time with k is due to the

synchronization constraint, and is simply masked by the large

load balancing benefit obtained in the cases with small shape

parameter.

C. Multi-Stage Jobs and Pipelining

The basic mode of MRSperf runs a map() on an RDD with

a controlled number of slices and then forces the execution

with a reducing function. It is also possible to chain a series

of map()s together, either with or without a synchronization

point in between. When there is an operation requiring a shuf-

fle between maps, Spark must wait for all tasks to complete

before continuing. When there is no synchronization between

maps, Spark will “pipeline” the maps, allowing the full chain

of maps to run on a slice independently of the other slices,

only synchronizing at the final stage. In this case the system is

essentially equivalent to a single-stage system where the task

service times have the distribution of the sum of the individual

stage service times. For example, if the tasks have exponential

service times, then the pipelined r-stage task would have an

Erlang-r service time distribution. The pipelined case is a

lower bound for the performance of the staged case.

Example experiment paths for these two types of multi-

stage experiments are shown in figure 4. In the first case, with

no pipelining, whenever there is a synchronization between

stages, a job cannot start the tasks from its next stage until all

tasks of the previous stage finish. This means that tasks from

incoming jobs will begin occupying the workers. We find that

it is much more common for jobs to overtake each other in

this case. We omit any further multistage results because of

space limitations.

V. CONCLUSION AND FUTURE WORK

We have presented forkulator and MRSperf, two tools for

experimenting with models of parallel systems in simulation

and on a real Spark cluster. Unlike other benchmarking suites,

MRSperf is designed to run simple, statistically controlled

experiments in a streaming context, to experiment with scaling

behavior of MapReduce systems. We run single-core Spark

workers in Docker containers, allowing us to run a large

number of workers on a relatively small number of servers.

We presented results comparing the popular Fork-Join model

of parallel processing to the Non-Idling Single-Queue model

which more accurately reflects the behavior of the Spark task

manager. We also validated some simulation results against

experimental data from a real cluster, and presented some data

from multi-stage experiments in different modes.

In the future we would like to extend MRSperf and forkula-

tor to experiment with jobs whose tasks have non-trivial shuffle

and reduce phases and more substantial I/O requirements. We

also would like to experiment with and model the distribution

of data in an RDD during a computation. This is essential

to understanding the scaling behavior of parallel systems,

because the the impact of the synchronization constraint is

mainly dependent on the intra-job task size variation.

REFERENCES

[1] G. F. Riley and T. R. Henderson, The ns-3 Network Simulator. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 15–34. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-12331-3_2

[2] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proc. of USENIX

OSDI, Dec. 2002, pp. 255–270, http://www.emulab.org.
[3] R. J. Nowling and J. Vyas, “A domain-driven, generative data model

for big pet store,” in 2014 IEEE Fourth International Conference on

Big Data and Cloud Computing, Dec 2014, pp. 49–55.
[4] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench:

A comprehensive benchmarking suite for in memory data analytic
platform spark,” in Proceedings of the 12th ACM International

Conference on Computing Frontiers, ser. CF ’15. New York,
NY, USA: ACM, 2015, pp. 53:1–53:8. [Online]. Available: http:
//doi.acm.org/10.1145/2742854.2747283

[5] Apache Software Foundation, “Apache spark,” https://spark.apache.org/,
2016.

[6] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “Using realistic
simulation for performance analysis of mapreduce setups,” in LSAP ’09.
New York, NY, USA: ACM, 2009, pp. 19–26. [Online]. Available:
http://doi.acm.org/10.1145/1552272.1552278

[7] S. Hammoud, M. Li, Y. Liu, N. K. Alham, and Z. Liu, “Mrsim: A dis-
crete event based mapreduce simulator,” in 2010 Seventh International

Conference on Fuzzy Systems and Knowledge Discovery, vol. 6, Aug
2010, pp. 2993–2997.

[8] B. Walker, “forkulator – fork-join queueing simulator,” https://github.
com/brentondwalker/forkulator, 2016.

[9] ——, “Mrsperf – statistically controllable arrivals and workloads for
spark,” https://github.com/brentondwalker/spark-arrivals, 2016.

[10] M. Fidler, B. D. Walker, and Y. Jiang, “Non-asymptotic delay bounds
for multi-server systems with synchronization constraints,” CoRR, vol.
abs/1610.06309, 2016. [Online]. Available: http://arxiv.org/abs/1610.
06309

[11] C. Willits, “Nested fork-join queuing networks and teir application
to mobility airfield operations analysis,” Ph.D. dissertation, Air Force
Institute of Technology, 1997.

[12] L. Flatto and S. Hahn, “Two parallel queues created by arrivals with
two demands. I,” SIAM Journal on Applied Mathematics, vol. 44, no. 5,
pp. 1041–1053, Oct. 1984.

[13] R. D. Nelson and A. N. Tantawi, “Approximate analysis of
fork/join synchronization in parallel queues.” IEEE Trans. Computers,
vol. 37, no. 6, pp. 739–743, 1988. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/tc/tc37.html#NelsonT88

[14] I. N. de Recherche en Informatique et en Automatique, F. Baccelli, and
A. Makowski, Simple Computable Bounds for the Fork-join Queue, ser.
Rapports de recherche. Institut National de Recherche en Informatique
et en Automatique, 1985.

[15] S. Varma and A. M. Makowski, “Interpolation approximations for
symmetric fork-join queues,” Perform. Eval., vol. 20, no. 1-3, pp.
245–265, May 1994. [Online]. Available: http://dx.doi.org/10.1016/
0166-5316(94)90016-7

[16] E. Varki, “Mean value technique for closed fork-join networks,”
SIGMETRICS Perform. Eval. Rev., vol. 27, no. 1, pp. 103–112, May
1999. [Online]. Available: http://doi.acm.org/10.1145/301464.301484

[17] D.-R. Liang and S. K. Tripathi, “On performance prediction of parallel
computations with precedent constraints,” IEEE Transactions on Parallel

and Distributed Systems, vol. 11, no. 5, pp. 491–508, May 2000.
[18] S.-S. Ko and R. F. Serfozo, “Response times in m/m/s fork-join

networks,” Advances in Applied Probability, pp. 854–871, 2004.
[19] R. Osman and P. G. Harrison, “Approximating closed fork-join

queueing networks using product-form stochastic petri-nets,” J. Syst.

Softw., vol. 110, no. C, pp. 264–278, Dec. 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2015.08.036

[20] G. Kesidis, Y. Shan, B. Urgaonkar, and J. Liebeherr, “Network
calculus for parallel processing,” SIGMETRICS Perform. Eval.

Rev., vol. 43, no. 2, pp. 48–50, Sep. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2825236.2825256

[21] A. Rizk, F. Poloczek, and F. Ciucu, “Stochastic bounds in fork—join
queueing systems under full and partial mapping,” Queueing Syst.

Theory Appl., vol. 83, no. 3-4, pp. 261–291, Aug. 2016. [Online].
Available: http://dx.doi.org/10.1007/s11134-016-9486-x

[22] M. Fidler and Y. Jiang, “Non-asymptotic delay bounds for (k, l)
fork-join systems and multi-stage fork-join networks,” in INFOCOM

2016, San Francisco, CA, USA, April 10-14, 2016, 2016, pp. 1–9.
[Online]. Available: http://dx.doi.org/10.1109/INFOCOM.2016.7524362

[23] R. Nelson, D. Towsley, and A. N. Tantawi, “Performance analysis
of parallel processing systems,” in SIGMETRICS ’87. New York,
NY, USA: ACM, 1987, pp. 93–94. [Online]. Available: http:
//doi.acm.org/10.1145/29903.29916

[24] D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241

[25] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. F. De Rose, “Performance evaluation of container-based
virtualization for high performance computing environments,” in
Proceedings of the 2013 21st Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing, ser. PDP ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 233–240.
[Online]. Available: http://dx.doi.org/10.1109/PDP.2013.41

[26] “FreeBSD Handbook,” https://www.freebsd.org/doc/handbook/book.
html, Accessed 2017.

[27] J.-Y. Le Boudec, Performance evaluation of computer and

communication systems, ser. Computer and communication sciences.
Lausanne: EPFL Press London, 2010. [Online]. Available:
http://opac.inria.fr/record=b1131863

[28] M. Dell’Amico, D. Carra, M. Pastorelli, and P. Michiardi, “Revisiting
size-based scheduling with estimated job sizes,” in MASCOTS 2014,
Paris, FRANCE, 03 2014. [Online]. Available: http://www.eurecom.fr/
publication/4268

