
30.10.97

1

Environment for Designing and Testing of IN-Services
(for ICIN’98 / Service specification, creation and validation)

Tim Welsch, Hermann Wietgrefe, Klaus Jobmann

Institut für Allgemeine Nachrichtentechnik

(Institute for Communications, University of Hannover)

Universität Hannover, Appelstr. 9A, 30167 Hannover, Germany

tel +49 / 511 / 762-2814, fax +49 / 511 / 762-3030

email: welsch@ant.uni-hannover.de

Abstract:

The use of Intelligent Networks (IN) comes with two major advantages. First there are

standardized interfaces between important network functions implemented which set the

hope to become independent of the switch manufacturers. The second advantage is the very

quick and easy providing of new IN-Services (INS) to the subscribers which is based on the

use of tested, reuseable Service Independent Building Blocks (SIB). For institutions like

providers or universities who do not own a running IN it is very difficult to deploy their new

service-idea, but this step is important for study, examination, demonstration or education

purpose. The presented developing environment is intended to fill this gap. It includes

different tools for the designing and the practical testing of INS: a SIB-Editor, an IN-Service-

Editor, a Service-Control-Function and two different Service-Switching-Functions. All

descriptions which are used for SIBs and INSs are following the ITU Q.1200-

Recommendations as far as possible.

The SIB-Editor-Tool manages a SIB library within a database. Althought the SIBs which

have been defined at the Capability Set (CS) 1 are already available in the environment, the

SIB-Editor provides the capability of creating new SIBs with new functions or modifying the

existing ones. In the environment a SIB is based on three descriptions:

1. a verbal description of its function only as an information to the human user,

2. a formal description which defines SIB names, Call Instance Data (CID), Service Support

Data (SSD) and SIB endpoints for the logical program flow which is important for the



30.10.97

2

runtime-operation on the Service Control Function (SCF) and the Global Service Logic

(GSL) respectively and

3. an implementation part, which contains the raw function of the SIB in pascal language.

The SIB editor can compile the SIB’s description to an executable program file which will be

used by the SCF at operation time.

The IN-Service-Editor-Tool manages the chain of SIBs which actual forms the service. Every

service can be loaded from and stored into the enviroments database. The INS editor

provides a graphical desktop as user interface to present a service. The SIBs appear as

object-boxes which can be dragged and dropped to get a clear and structured representation

of the service. SIBs that are stored in the library can be added to the desktop and the actual

chaining is done by mouse interaction with linking a SIB‘s logical endpoint with the startpoint

of another SIB. The Basic Call State Mashine (BCSM) includes the interface-functionality of

a switch and the Service Switching Point (SSP) respectively. This BCSM function is also

represented on the desktop as a box with startpoints and endpoints which are called Points

Of Return (POR) and Points Of Initiation (POI). The allocation of SSD-parameters is

possible for every seperate SIB. During our examinations we found that it is insufficient to

rigidly use only a comparison between a CID-Input name and a CID-Output name for

transferring the data values to the next SIB. For this reason we provide a mask to every

single instance of CID-Input parameters which can select any existing CID-parameter at the

current service for masking.

The Service-Control-Function-Tool (SCF) works simular to an operation system of a Service

Control Point (SCP) and makes a service available. The user can launch the various

services that have been stored into the database. On a console window he can follow the

resource allocation of this service or analyse the error message in case of a malfunction. At

service launching time it is necessary that the SIBs needed for the selected service are

available as an application running on the system. After starting a SIB executable it registers

automatically at the SCF via a specialised software interface. It can be gathered from the

ITU-Recommendations that it is sufficient to provide a function only one time at most on a

physical point which is valid especially for the SIB functions. So we decided to share the SIB

resource by entrusting the SCF and the GSL respectively to control the SIB activation

requests by the various services. We also took a look at the data handling between GSL and

SIBs: ITU determines to pass a pointer from the controlling GSL to the SIB which points to

the real CID value that has to be transferred. Such a pointer grants read/write access on the

CID. We prefer to distinguish between read and write because of the two following reasons:

First our environment is used for development and may work with new, untested SIBs which

are not necessarily error free. To enclose errors in services it is usefull to guarantee that a



30.10.97

3

SIB with only CID-Input property can not override the CID. The second problem may occur

later on, when a third party manufacturer builds single SIBs which implementations are usual

hidden. Then it may be interesting to define the read and write access seperatly to protect

some user relevant CID like PIN or like previous used services tracked down by the previous

routing number. To make this interface save we implemented a further stage in the GSL

which can generate a copy of an input CID and publishes the corresponding pointer to the

SIB. On the other hand it copies the possible modified SIB-Output value back to the real

CIDs within the bounds of a regular CID-Output property.

For testing purpose of the launched services a SSF is required and for the signaling between

SSF and SCF the Intelligent Network Application Protocol (INAP) is recommended. Because

we wanted a flexible realisation the enviroments Functions are not bound to dedicated

points. The SSFs may run on an other physical point as where the SCF runs. Here is the

need to establish universal signaling links between the enviroments points. We studied

varios possibilities for linking the points regarding to the use as a laboratory environment and

regarding to the available hardware that consists most of PC with MS-DOS or MS-Windows

as operating system. We found out that the IPX protocol do the job best with least expense.

Moreover we are free to use the TCP/IP later on with the same hardware to involve points

which use unix as operating system. The INAP messages are directly transmitted via IPX

running on the institutes ethernet LAN. An incoming INAP message to the SCF which

contains a valid service request from any SSF invokes the GSL. The GSL immediatly begins

to call the corresponding SIBs in their chained order. All important GSL actions are displayed

on the SCF console window to track down service malfunctions. As the logical program

control reaches an POR of the BCSM-SIB the GSL origins an INAP message back to the

SSF containing a possibly changed routing address.

We have developed two kinds of SSFs. The first one is a compact software tool which works

like a virtual PABX/Switch. This tool can be used to check the routing capabilities of an

launched service but voice-sessions etc. are not supported. On the desktop some subscriber

lines are displayed with allocated preset routing numbers. The user can enter any sequence

of dialled digits to request the service. The line to which the call is re-routed by the service

starts flashing to show the routing result. The other SSF includes real PABX-Systems. Every

switch-system consist of an PC with an network interface card (NIC) for signaling and one

telecommunication card which provides four ISDN-BRI lines. It is possible to link two

switches by crossconnecting one BRI line. The remaining lines are equipped with standard

Euro-ISDN-telephon-sets. The switch software supports normal internal calls with no SCF

interaction. IN calls are recognized by a table with valid IN triggers which is stored in the

SSF. Such an IN trigger originates an INAP message to the SCF and the actions described

above. As the new routing number is handed back to the switch the call and the speech



30.10.97

4

channel respectivley is forwarded to the next switch for example. The users can hook off,

dial and talk normaly over this connection which is sufficient to show practically, how INS

work and how they appear to the subscribers. Also the major part of the Service-Data-

Function (SDF) is contained in the environment because Borlands pascal compiler includes

an SQL-Database-Engine that provides easy access via SQL to vairous database formats.

To get SDF functionality within a SIB there are just a few pascal/SQL commands at the SIB’s

implementation part necessary.

Within this environment we deployed services like Virtual-Number, Login-To-Virtual-Number

and an Extended-Televoting with routing for percentage winners. All these services have

been attended with small dialog-management-tools to show how easy the service provider

can manage the service.

The level of development of this environment allows the fast implementation of new ideas for

IN-Services. A new service can be testet and demonstrated on a small PABX system with

real speech connections. The environment is also meant as a base for further studies on SIB

interaction, IN-Service interaction and new definitions for SIB interfaces. Therefor we have to

improve or add some monitoring and logging tools for the different internal GSL actions and

states. Another topic can be a study about the sufficiency of ITU’s CSs and which extensions

to the INAP are necessary to implement a new CS. We are also working on the INAP

implementation to a small existing Special-Resource-Function (SRF) that is needed for all

services with audio input or output like speech and DTMF recognition and playing

announcements to the subscribers.


