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ABSTRACT

We consider a time-of-arrival (ToA) estimation in the pres-
ence of path attenuation. Maximum correlation (MC) is re-
visited and maximum likelihood (ML) is newly derived to es-
timate the ToA. It reveals that for low effective bandwidth,
short distance and large path loss exponent, the ML has a
smaller error variance than the MC. Numerical examples il-
lustrate that the ML outperforms the MC.

Index Terms— Time of arrival estimation, Maximum
likelihood estimation.

1. INTRODUCTION

The problem of estimating some waveform parameters in ad-
ditive Gaussian noise is investigated for long time ago [1].
Extensive literatures indicate that time delay estimation plays
an important role in applied signal processing, which is in-
timately related to detection, synchronization, array process-
ing, surveillance, range finding, tracking and geolocation [2].
Time-of-arrival (ToA) estimation is deemed a favorable tech-
nique for those applications, since its accuracy depends on
the signal bandwidth, which allows the designer to adjust the
signal according to a desired precision. In classical time de-
lay problem, the path gain describes the propagation effect
[3, 4, 5]. In the previous works, the path gain is treated to be
distance-independent and hence maximum likelihood (ML)
solution yields a maximum correlation (MC) between the re-
ceived signal and a delayed replica of the transmitted signal.
Recently, the vast development of channel modeling reveals
that signal energy is attenuated in the channel [6, 7, 8], thus
calling for the exploration of path loss in the ToA estimation.

In this paper, we consider the ToA estimation in which the
path gain is distance-dependent. The ToA estimation in this
manner can be applied to any localization application, which
uses the ToA as the key feature of determining the target po-
sition. To estimate the ToA, the traditional MC is applied and
can be regarded as the ToA estimation without the informa-
tion of path loss.

Contributions of the paper are to investigate the benefit of
deploying the attenuation of the path gain. We derive the ML
estimator and its asymptotic error performance for the ToA

estimation. It is worthwhile to note that the new ML is differ-
ent from the MC in that it includes the knowledge of path loss,
thus constituting a hybrid signal strength (SS)-ToA approach.
Compared to the MC, the ML allows the investigation of the
path attenuation deployment. The explicit form of the error
performance of both estimators is derived using a standard
and unified framework based on expanding the Taylor series
of the objective function. The analytic results point out that
the ML has a smaller error variance than the MC. As a conse-
quence, it can be implied that the exploitation of the path loss
increases the accuracy of time delay estimation. Numerical
results illustrate that the ML well outperforms the MC for a
low effective bandwidth of the transmitted signal, a small dis-
tance between the transmitter and receiver, and a large path
loss exponent.

2. TRANSCEIVER MODEL

The received energy at the receiver can be expressed by (see
e.g.[7, p. 38] and [8, p. 46])

E = κ
dγ
0

dγ
Es, (1)

where d0 is the close-in reference in the far field region, d
is the distance between the receiver and the transmitter, γ is
the path loss exponent, Es =

∫ ∞
−∞ |s(t)|2dt is the energy of

transmitted signal s(t), and κ is the unitless constant depend-
ing on antenna characteristics and average channel attenua-
tion given by κ = c2

16π2f2
0 d2

0
, with the center frequency f0 and

the speed of light c. The received baseband signal is

r(t) = a0s(t − τ0) + n(t), (2)

where s(t) is a known waveform, a0 and τ0 are the amplitude
and the time delay of propagation to the receiver, respectively,
and n(t) is an additive noise at the receiver and assumed to be
a complex-valued zero-mean white Gaussian process with a
variance of σ2

n. The channel is assumed herein to be static in
such a way that the unknown parameter τ0 is invariant over
the observation period t∈ (0, T ] and the large-scale fading is
considered as a spatial average over the small-scale fluctua-
tions of the signals [9, p. 847]. Assuming E = a2Es, the path



gain is given by

a0 =
√

κ

(
d0

cτ0

) 1
2 γ

. (3)

Let the solution of the homogeneous Fredholm integral equa-
tion

∫ T

0
ϕ(t, t́)fk(t́)dt́ = λkfk(t) for k ∈ {1, 2, . . . ,K} be

the eigenvalue λk and the orthonormal function fk(t), where
the kernel ϕ(t, t́) is the eigenfunction, which is the noise au-
tocovariance function. Using the Karhunen-Loève (KL) ex-
pansion (see e.g. [4, p. 37], and [10, p. 298]), the signal can
be sampled from fk(t) according to

r(t) = lim
K→∞

K∑
k=1

rkfk(t), (4)

where the received signal sample is given by rk =
∫ T

0
fk(t)

r(t)dt. From (2), the received signal sample can be expressed
by

rk = a0sk + nk, (5)

where the signal and noise samples are given by sk =∫ T

0
fk(t)s(t − τ0)dt and nk =

∫ T

0
fk(t)n(t)dt. Assume that

the basis function fk(t) is chosen such that the noise samples
{nk}K

k=1 are identically and independently distributed. The
probability density function (PDF) of the complex Gaussian
random multivariate {rk}K

k=1 can be written as

p(r1, . . . , rK |τ0) =
1

(πσ2
n)K

e
− 1

σ2
n

K∑
k=1

|rk−a0sk|2
. (6)

Given the continuous signal r(t); t∈ (0, T ], the likelihood of
τ0 can be written in logarithm scale as

l(τ0|r(t); t∈(0, T ]) = lim
K→∞

ln (p(r1, . . . , rK |τ0))

.= − 1
σ2

n

∫ T

0

|r(t) − a0s(t − τ0)|2dt,
(7)

where
.= is the equivalence by neglecting an irrelevant term.

3. TOA ESTIMATION AND ERROR PERFORMANCE

In this section, we consider the theoretical error performance
of a desired ToA estimator based on a cost function. Let g(τ)
be an objective function, which is continuous and differen-
tiable up to the second order. Taking the first-order Taylor
series of the derivative ∂

∂τ g(τ) around the true value τ0, we
arrive at (see e.g. [3, eq. (17-9.2)] and [4, eq. (6-50)])

∂

∂τ
g(τ) =

∂

∂τ
g(τ)

∣∣∣∣
τ=τ0

+
∂2

∂τ2
g(τ)

∣∣∣∣
τ=τ0

(τ−τ0)+o((τ−τ0)2),

(8)
where the little oh of u(τ − τ0) = o(v(τ − τ0)) stands for
lim

τ→τ0

u(τ−τ0)
v(τ−τ0)

= 0. At the estimated point τ = τ̂ , we ob-

tain 0 = ∂
∂τ g(τ)

∣∣
τ=τ0

+ (τ̂ − τ0) ∂2

∂τ2 g(τ)
∣∣∣
τ=τ̆

(see e.g.

[11, p. 240]), where τ̆ lies in the line segment between
τ0 and τ̂ . For a continuous derivative ∂2

∂τ2 g(τ), the quan-

tity ∂2

∂τ2 g(τ)
∣∣∣
τ=τ̆

converges to En(t)

{
∂2

∂τ2 g(τ)
∣∣∣
τ=τ0

}
with

probability one. As a result, the time delay estimation error
converges to

τ̂ − τ0
∼= −

∂
∂τ g(τ)

∣∣
τ=τ0

En(t)

{
∂2

∂τ2 g(τ)
∣∣
τ=τ0

} , (9)

where ∼= is the equality by neglecting o((τ − τ0)2).

3.1. Maximum Correlation

The maximum correlation lies in the same idea as the matched
filter in binary information detection. It corresponds to the
maximum likelihood for the case in which the path gain is
independent of the ToA. We shall refer the MC to as the clas-
sical method for the ToA estimation. Let ρ(τ) be a correlation
function between the received signal and a delayed replica of
the transmitted waveform, i.e.

ρ(τ) =
∫ T

0

� (r∗(t)s(t − τ)) dt, (10)

where �(·) is the real part and (·)∗ is the complex conjugate.
The solution of the MC is given by τ̂MC = arg max

τ
ρ(τ).

Following from (9), the time delay error of the MC is

τ̂MC − τ0
∼= ρ̇ns(τ0)

4π2Esβ̄2a0
, (11)

where ρ̇ns(τ) =
∫ T

0
� (

n∗(t) ∂
∂τ s(t − τ)

)
dt. Using En(t){ρ̇ns

(τ0)} = 0 and En(t){ρ̇2
ns(τ0)} = 2π2β̄2Esσ

2
n, the bias and

error variance of the MC estimate are written as

En(t){τ̂MC − τ0} = 0, (12a)

En(t){(τ̂MC − τ0)2} =
1

Es
σ2
n
8π2β̄2a2

0

, (12b)

where β̄ is the effective (root-mean-square) bandwidth de-
fined by

β̄ =

√√√√
∫ ∞
−∞ f2 |S(f)|2 df∫ ∞
−∞ |S(f)|2 df

, (13)

with S(f) being the Fouriér transform of s(t). The error per-
formance shown above is equivalent to the standard bench-
mark, i.e. the Cramér-Rao bound (CRB) for the time delay es-
timation based on the distance-independent path gain [3, 4, 5].

3.2. Maximum Likelihood

The maximum likelihood is derived from the likelihood func-
tion in (7). It is a classical and optimal method in the sense



of asymptotic error variance for the probabilistic model [12].
Let ζ(τ) be the ML objective function defined by

ζ(τ) = a2(τ)Es − 2a(τ)ρ(τ), (14)

where a(τ) =
√

κ
(

d0
cτ

) 1
2 γ

. The ML estimate can be given
by τ̂ML = arg min

τ
ζ(τ). The ML time delay estimation error

converges to

τ̂ML − τ0
∼= τ0(2τ0ρ̇ns(τ0) − γρns(τ0))

Es( 1
2γ2 + 8π2β̄2τ2

0 )a0

, (15)

where ρns(τ)) =
∫ T

0
� (n∗(t)s(t − τ)) dt. Using En(t){ρns(τ0)}

= 0, En(t){ρ̇ns(τ0)} = 0, En(t){ρ2
ns(τ0)} = 1

2Esσ
2
n,

En(t){ρ̇2
ns(τ0)} = 2π2β̄2Esσ

2
n and En(t){ρns(τ0)ρ̇ns(τ0)} =

0, the bias and error variance remain

En(t){τ̂ML − τ0} = 0, (16a)

En(t){(τ̂ML − τ0)2} =
1

Es
σ2
n
a2
0

(
8π2β̄2 + 1

2τ2
0
γ2

) . (16b)

It is straightforward to verify that the CRB yields the same
expression as (16b). We can see that the ratio between the
ML and the MC error variances is given by

En(t){(τ̂ML − τ0)2}
En(t){(τ̂MC − τ0)2} =

1
1 + 1

16π2β̄2τ2
0
γ2

, (17)

which indicates that the ML error variance in (16b) is less
than that of the MC in (12b). The ML error variance becomes
the MC error variance for i) large distance, ii) large effective
bandwidth and iii) γ = 0. The latter condition is however
irrelevant, since the case γ = 0 means no path attenuation
presents. In fact, for free space the path loss exponent is of
γ = 2 (see e.g. [13, p. 88]), while for wireless environment,
the path loss exponent can be less than 2 but larger than 0
[8, p. 47]. The performance improvement thus exists and is
significant, when τ0 and β̄ are small and γ is large.

4. NUMERICAL RESULTS

The ToA estimation in the path attenuation developed above
can be applied to any analytic signal. In this work, we
consider the orthogonal frequency division multiplexing
(OFDM) signal.

4.1. OFDM Signal

The OFDM signal of the duration t ∈ [0, Ts] is given by (see
e.g. [14])

s̃(t) =
N−1∑
k=0

bkej2πfkt, (18)

where {bk}N−1
k=0 is the block of N complex data symbols cho-

sen from a signal constellation, such as quadrature amplitude

modulation (QAM) or phase shift keying (PSK), and fk =
f0+ 1

Ts
k. At the receiver, the OFDM signal is down-converted

to baseband representation, i.e. s(t) = s̃(t)e−j2πf0t. For
s(t); t∈ [0, Ts], the effective bandwidth can be written as

β̄ =
1
Ts

√√√√√√√√

N−1∑
k1=0

N−1∑
k2=0

k1k2bk1b
∗
k2

sinc (π(k1 − k2)) ejπ(k1−k2)

N−1∑
k1=0

N−1∑
k2=0

bk1b
∗
k2

sinc (π(k1 − k2)) ejπ(k1−k2)

,

(19)

where sinc(φ) = 1
φ sin(φ) is the unnormalized sine cardinal

function. We found that the effective bandwidth in (19) pro-
vides the same value as that of the following.

Lemma 1 (Effective bandwidth of baseband OFDM signal).
According to the baseband representation in (2), the effective
bandwidth of the baseband OFDM signal is given by1

β̄ =
1
Ts

√
1
6
(2N2 − 3N + 1). (20)

Proof. Using the Parseval’s theorem, the signal energy is
∞∫

−∞
|S̃(f)|2df =

∞∫
−∞

|s̃(t)|2dt =
N−1∑
k1=0

N−1∑
k2=0

bk1b
∗
k2

lim
T∞→∞

2T∞

sinc
(

1
Ts

2π(k1 − k2)T∞
)

. From the derivative property of

the Fouriér transform, the second moment of signal fre-

quency reads
∞∫

−∞
f2|S̃(f)|2df = 1

4π2

∞∫
−∞

∣∣ ∂
∂t s̃(t)

∣∣2 dt =

N−1∑
k1=0

N−1∑
k2=0

bk1b
∗
k2

fk1fk2 lim
T∞→∞

2T∞sinc
(

1
Ts

2π(k1 − k2)T∞
)

.

The square of the effective bandwidth can be written as

β̄2 = lim
T∞→∞

N−1∑
k1=0

N−1∑
k2=0

fk1fk2bk1b∗k2
sinc( 1

Ts
2π(k1−k2)T∞)

N−1∑
k1=0

N−1∑
k2=0

bk1b∗k2
sinc( 1

Ts
2π(k1−k2)T∞)

. Us-

ing sinc(∞) = 0 and |bk|2 = |bḱ|2; k �= ḱ, we have

β̄ =
√

f2
0 + 1

Ts
(N − 1)

(
f0 + 1

6Ts
(2N − 1)

)
, which re-

duces to (20) for the baseband OFDM system.

4.2. Link Budget

At f0 = 1.9 GHz and for d0 = 100 m, it is shown in [6]
that κdB = 10 log10(κ) ∼= −78 dB. From (1), we obtain

10 log10

(
E
σ2
n

)
= κdB + 10γ log10

(
d0
d

)
+ SNRdB, where

SNRdB is the transmitted SNR in dB defined by SNRdB =
10 log10

(
Es
σ2
n

)
. In general, the term 10 log10

(
E
σ2
n

)
can be

considered as a received SNR. For a simple link budget, we
assume γ = 4.5425, d0 = 100 m and d = 1,000 m. If

the receiver desires the received SNR, 10 log10

(
E
σ2
n

)
, of 0

1The result of (19) can also be verified in MATLAB R© to yield (20).
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Fig. 1. RMSE of the position estimate as a function of the
signal-to-noise ratio Es

σ2
n

(dB) for γ = 4.5425, d = 1,000
m, Ts = 10−3 sec, β̄ = 3.6517 × 104 Hz, sampling time
= 3.7037 × 10−9 sec, and NR = 1,000 independent runs.

dB, the transmitter has to transmit the signal with SNRdB =
78.0168 − 45.425(2 − 3) = 123.4418 dB. Considering the
path attenuation, the transmitter should transmit a high SNR.

4.3. Maximum Correlation Implementation

To implement the cross-correlation in (10), we apply the
Fouriér transform (see e.g. [15, p. 122]) such that

ρ(τ) = �
(∫ ∞

−∞
r(t)s∗(−(τ − t))dt

)

= � (r(t) ∗ s∗(−t))

= �
(∫ ∞

−∞
R(f)S∗(f)ej2πτfdf

)
,

(21)

where f1(t) ∗ f2(t) =
∫ ∞
−∞ f1(τ)f2(t− τ)dτ is the convolu-

tion between f1(t) and f2(t), and R(f) is the Fouriér trans-
form of r(t). The cross-correlation can be efficiently com-
puted by the fast Fouriér transform (FFT) of r(t) and s(t) and
then the inverse FFT of their product.

4.4. Numerical Examples

We employ the OFDM with N = 25 subbands. The quadra-
ture phase shift keying (QPSK) is used as the signal constel-
lation. Each component of the QPSK is independently drawn
from +1 and −1 with equal probability. Theoretical root-
mean-square error (RMSE) is computed from the square root
of (12b) and (16b), which are multiplied by c. For the smallest
computation, the observation period is chosen as T = Ts+τ0.

In Fig. 1, the RMSE of the estimate of the distance be-
tween the transmitter and the reciever is shown as a function
of the transmitted SNR. For low SNR, both the MC and the
ML provides meaningless distance estimates, i.e. the RMSE
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Fig. 2. RMSE of the position estimate as a function of the
signal duration Ts (sec) for γ = 4.5425, d = 1,000 m,

10 log10

(
Es
σ2
n

)
= 150 dB, sampling time = 1

2.5×105 T sec,

and NR = 1,000 independent runs.

is larger than the actual distance. It can be seen that the SNR
threshold, the SNR at which the ML and the MC fall into
their asymptotic error, is approximately 137 dB for the MC
and 133 dB for the ML. The use of the path loss can gain the
accuracy of more than 600 m for a positioning system.

In Fig. 2, the RMSE is shown as a function of the signal
duration Ts, which is inversely proportional to the effective
bandwidth of the OFDM signal. It can be seen that when the
signal duration is smaller, the RMSEs of both estimators ap-
proach the same value, i.e. 1

8π2β̄2 Es
σ2
n

a2
0

. For a larger signal

duration, the ML provides a constant RMSE, which does not
increase with the increase of the signal duration. The cause of
this phenomenon is that the time delay in this regime is esti-
mated mainly from the signal strength in the path gain. From
(16b), the term 8π2β̄2 has less impact as the signal duration
increases. The error saturation is then dominated by 1

2τ2
0
γ2,

which is independent of the effective bandwidth. The ML has
a smaller RMSE than the MC. This is because the ML ex-
ploits the information of the path attenuation, while the MC
has no information of the time delay in the path gain.

In Fig. 3, the RMSE is shown as a function of the path
loss exponent γ. The RMSE increases with the larger value
of γ. In (16b), the performance improvement of the path loss
is gradually minor for a smaller γ. For a very severe situation,
i.e. large γ, the received SNR drops such that both the MC
and the ML cannot find the true ToA.

In Fig. 4, the RMSE is shown as a function of the dis-
tance d between the transmitter and the receiver. The large
distance causes a larger estimation error. The performance
improvement of the ML over the MC is more evident at a
closer distance. For an extremely large distance, the received
SNR drops again such that both the MC and the ML cannot
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Fig. 3. RMSE of the position estimate as a function of the
path loss exponent γ for β̄ = 3.6517 × 104 Hz, d = 1,000 m

and 10 log10

(
Es
σ2
n

)
= 150 dB, Ts = 10−3 sec, sampling time

= 1
2×106 T sec, and NR = 100 independent runs.

estimate the ToA.

5. CONCLUSION AND FUTURE DIRECTIONS

The exploration of the path loss increases the accuracy of the
ToA estimation. The study of imperfect channel parameters,
e.g. path loss exponent, is an upcoming work, while the effect
of shadow fading was investigated in [16]. The path gain in
(3) can be extended to include additional small-scale fading.
Furthermore, multipath can also be taken in (2) into account.
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Abstract

•We consider the time-of-arrival (ToA) estimation in the presence of path
attenuation.

•Maximum correlation (MC) estimator is revisited and maximum likelihood (ML)
estimator is newly derived to estimate the ToA.

• It reveals that for low effective bandwidth, short distance and large path loss
exponent, the ML estimator has a smaller error variance than the MC estimator.

•Numerical examples illustrate that the ML estimator outperforms the MC
estimator.

Introduction

• In the previous works, path gain is treated to be distance-independent and hence
the ML solution yields an MC between the received signal and a delayed replica
of the transmitted signal.

• Since the signal energy is attenuated during the propagation, the exploration of
path loss in the path gain is a promising idea to improve the ToA estimation
performance.

•The goal of this work is to investigate the benefit of deploying the attenuation of
the path gain.

Received Energy
The received energy at the receiver can be expressed as (see, e.g., [Rappaport 2002,
p. 38]a and [Goldsmith 2005, p. 46]b)

E =
d
γ
0

dγ
κEs, (1)

where d0 is the close-in reference distance in the far field region, d is the distance
between the receiver and the transmitter, γ is the path loss exponent,
Es =

∫∞
−∞ |s(t)|2dt is the energy of transmitted signal s(t), and κ is the unitless

constant depending on antenna characteristics and average channel attenuation
given by κ = c2

16π2f 2

0
d2
0

, with the center frequency f0 and the speed of light c.

Assuming E = a2Es, the path gain is given by

a0 =
√
κ

(

d0

cτ0

)
1

2
γ

. (2)

Transceiver Model

•The received baseband signal is

r(t) = a0s(t− τ0) + n(t), (3)

where s(t) is a known waveform, a0 and τ0 are the amplitude and the
propagation time from the transmitter to the receiver, respectively, and n(t) is an
additive noise at the receiver and assumed to be a complex-valued zero-mean
white Gaussian process with a variance of σ2

n.

Maximum Correlation Estimator
The MC estimate of the ToA is given by (see, e.g., [Urkowitz 1983]c)

τ̂MC = argmax
τ

∫ T

0

ℜ (r∗(t)s(t− τ )) dt, (4)

where T is the observation period, ℜ(·) is the real part, and (·)∗ is the complex
conjugate. the bias and error variance of the MC estimate are written as

En(t){τ̂MC − τ0} = 0, (5a)

En(t){(τ̂MC − τ0)
2} =

1
Es

σ2
n

8π2β̄2a20
, (5b)

where β̄ is the effective (root-mean-square) bandwidth defined by

β̄ =

√

√

√

√

∫∞
−∞ f 2 |S(f )|2 df
∫∞
−∞ |S(f )|2 df

, (6)

with S(f ) being the Fourier transform of s(t).
a[Rappaport 2002] T. S. Rappaport, Wireless Communications: Principle and Practice, 2 ed., Englewood Cliffs, NJ: Prentice Hall, 2002.
b[Goldsmith 2005] A. Goldsmith, Wireless Communications, New York, NY: Cambridge University Press, 2005.
c[Urkowitz 1983] H. Urkowitz, Signal Theory and Random Process, Norwell, MA: Artech House, 1983.

Maximum Likelihood Estimator
The ML estimate of the ToA is given by

τ̂ML = argmin
τ

a2(τ )Es − 2a(τ )

∫ T

0

ℜ (r∗(t)s(t− τ )) dt. (7)

The bias and error variance of the ML estimate are given by

En(t){τ̂ML − τ0} = 0, (8a)

En(t){(τ̂ML − τ0)
2} =

1

Es

σ2
n

(

8π2β̄2 + 1
2τ 2

0

γ2
)

a20

. (8b)

Relative Performance
The ratio between the ML and the MC error variances is given by

En(t){(τ̂ML − τ0)
2}

En(t){(τ̂MC − τ0)2}
=

1

1 + 1
16π2β̄2τ 2

0

γ2
. (9)

Numerical Examples
The effective bandwidth of the baseband OFDM signal is given by

β̄ =
1

Ts

√

1

6
(2N 2 − 3N + 1), (10)

where Ts is the signal duration, and N is the number of subbands.
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Fig. 1: RMSE of the position estimate as a function of the signal duration Ts (sec)

for γ = 4.5425, d = 1,000 m, 10 log10

(

Es

σ2
n

)

= 150 dB, sampling time = 1
2.5×105T sec, and

NR = 1,000 independent runs.
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Fig. 2: RMSE of the position estimate as a function of the path loss exponent γ for

β̄ = 3.6517× 104 Hz, d = 1,000 m and 10 log10

(

Es

σ2
n

)

= 150 dB, Ts = 10−3 sec, sampling

time = 1
2×106T sec, and NR = 100 independent runs.


