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Abstract— We propose a Bayesian filter algorithm for tracking 
the position of mobile terminals in wireless cellular networks 
when the loss of GPS information occurs. Our technique 
utilizes simulated IMU (inertial measurement unit) data and 
map-matching according to the received cell-ID in the 
prediction and update steps of the algorithm respectively. The 
map used for matching has been generated by correlating 
geographical data and radio profile prediction information of 
the experimental area. We show how to maintain location 
information for mobile terminals in wireless networks using a 
novel combination of data sources. Our approach provides a 
reliable solution in street canyons and heavy tree canopies 
where GPS information is almost always inapplicable. The 
developed technique could also be applied to vehicle 
navigation, where dead-reckoning instruments are available 
and accurate. 

I. INTRODUCTION 
The first application of mobile location dates back to 

World War II, when it was critical to locate military 
personnel rapidly and precisely in emergency situations [1]. 
In the nineties, the GPS was made accessible for commercial 
applications. Furthermore, the EU is most likely to follow 
the US and Japan in requiring high positioning accuracy of 
mobile emergency calls from 2010 when the Galileo system 
will be fully operational [2]. However, the benefits of GPS 
could be limited where position information is still needed 
due to obscured view to satellites or degraded accuracy 
caused by multipath. 

A backup to GPS during signal outage with comparable 
accuracy could be achieved using fusion of inertial 
measurement unit (IMU) raw data with already existing cell-
ID based methods and map-matching. The radio profile of a 
given area can determine routes that are covered by each cell 
antenna. Therefore, the computational cost of map-matching 
algorithms would be reduced to a minimum. 

The proposed positioning algorithm is designed to 
maintain mobile location information during GPS signal 
blocking using the recursive Bayesian filter [3]. The initial 
position is assumed as the last GPS position fix. The main 
task of the algorithm would be to compensate for IMU data 

errors using map-matching. Our proposed algorithm is 
assumed to be a mobile-based technique, where map 
information is provided by network operators. However, the 
technique could be run as network-based if the IMU data is 
uploaded from the mobile terminal (MT) to the operator 
network. 

The objective of this paper is to investigate the feasibility 
of MT location using IMU raw data with cell-ID and 
geographical map information. We examine this concept by 
fusing simulated IMU data with real-world cell-id 
information from cellular wireless networks and map-
matching in order to maintain MT location information 
outdoors with accuracy comparable to that of GPS 
positioning. Radio maps generated by radio propagation 
prediction tools are used off-line to determine road areas 
covered by every cell antenna in our test area. Our 
experiments will investigate the range of acceptable IMU 
data errors that would allow reliable positioning when using 
real IMU data. 

The rest of the paper is organized as follows. The next 
Section presents the basics of the proposed positioning 
algorithm. Section III discusses the motion and world models 
utilized in our work. Experimental results are provided in 
Section IV, and the whole paper is concluded in Section V. 

II. THE POSITIONING ALGORITHM 

A.  Recursive Bayesian Filtering 
The recursive Bayesian filter (RBF) [3] is a probabilistic 

framework for state estimation that utilizes the Markov 
assumption, i.e., past and future measurements are 
conditionally independent if the current state is known. In 
the context of the proposed MT localization algorithm, the 
RBF estimates the posterior belief of the MT position given 
its prior belief, IMU measurements, cell-ID of the serving 
base station (BS), and a model of the world. The RBF is 
stated mathematically as 

)](),,|([),|()( 111 −−− ⋅⋅⋅= ∑ ttttttt sBelmasspmsopsBel η . 

        (1) 
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Where )( tsBel is the posterior belief over the MT 
position ts at time t , and η  is a normalization constant to 
ensure that )( tsBel  will sum up to one over all states. 
However, normalization is not crucial for filter 
implementation. The term ),|( msop tt is the likelihood of 
the measurement or observation to of the serving cell-ID at 
time t given the current MT position and the world 
model m . It is also known as the observation model. The 
expression ),,|( 11 massp ttt −− is the probability that the MT is 
at ts given it executed the movement 1−ta when it was 
at 1−ts within the space defined by m . It is also called the 
motion model. Finally, )( 1−tsBel is the prior belief over the 
MT position. A complete derivation of expression (1) is 
provided in [4]. 

TABLE I shows how Equation (1) is usually computed in 
two steps called prediction and update, where )( tsBel − is the 
posterior belief just after executing action 1−ta  and before 
incorporating the observation to . Note that MT actions and 
observations are assumed to occur in an alternative sequence. 

TABLE I.  GENERIC RECURSIVE BAYESIAN FILTER 

 

 

 

 

 

 

 

B. Practical Implementation 
A single iteration of the positioning algorithm is given in 

TABLE II. The inputs are the initial position ),( 111 −−− = ttt yxs , 
the IMU data ),( 111 −−− = ttt transa θ , where 1−ttrans  and 1−tθ  
are the translation (after twice integration of the IMU 
acceleration measurement) and orientation (IMU compass) 
in a 2D Cartesian coordinate system at time 1−t respectively, 
the network measurement to , and the corresponding world 
map tm where jw is the weight of the j-th location candidate 
and initially set to zero. Note that the proposed algorithm 
updates only one position hypothesis. 

The positioning algorithm propagates the known initial 
MT location 1−ts using IMU data in the prediction step. The 
propagated location is then updated by matching it to the set 
of candidate locations that are covered by the current serving 
cell antenna, after descending sort of the candidates w.r.t. 
weight, the new MT position is simply the candidate of the 

minimum Euclidean distance to the location computed in the 
prediction step. 

TABLE II.  THE PROPOSED POSITIONING ALGORITHM 

  

III. MOTION AND WORLD MODELS 

A. Motion Model 
The motion model used in the prediction step is simply 

dead reckoning that computes the next location by applying 
the course and distance traveled since to a previous position 
according to the following two equations 

111 cos. −−− += tttt transxx θ ,         (2) 

111 sin. −−− += tttt transyy θ .         (3) 

To investigate the feasibility of IMU raw data we have 
generated IMU measurements with additive white Gaussian 
noise (AWGN) as 

transt
noisy
t transtrans ζ+= −− 11 ,        (4) 

orientt
noisy
t ζθθ += −− 11 .         (5) 

And 
),( 1 transttrans transN σζ −= ,        (6) 

),0( orientorient N σζ = .         (7) 

Where transζ is the Gaussian translation error with 
1−ttrans  mean and standard deviation of transσ . 

And orientζ is the Gaussian orientation error with zero 
mean and standard deviation of orientσ . Thus the 
expressions for the predicted position are 

Algorithm Generic_RBF( moasBel ttt ,,),( 11 −− ) 

     for all ts do 
          Prediction Step 
          ∑ −−−

− ⋅= )](),,|([)( 111 ttttt sBelmasspsBel  

          Update Step 
          )(),|()( tttt sBelmsopsBel −⋅⋅=η  
     endfor 
     return( )( tsBel ) 

Algorithm Positioning( tttt moas ,,, 11 −− ) 
     // Inputs 
     ),( 111 −−− = ttt yxs  

     ),( 111 −−− = ttt transa θ , tt IDcello −=  

     niwyxDBm iiiIDcellt t
...1,,, =>=<= − , 0>=< iw  

     Prediction Step 
     111 cos −−−

− ⋅+= tttt transxx θ  

     111 sin −−−
− ⋅+= tttt transyy θ  

     Update Step 
     for ni :1= do 

          
22 )()(
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     endfor 
     )( tt msortm =  // Descending sort w.r.t weight 

     ),(),( 11 yxyxs ttt ==  

return( ts ) 
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noisy
t

noisy
ttt transxx 111 cos. −−− += θ ,        (8) 

noisy
t

noisy
ttt transyy 111 sin. −−− += θ .        (9) 

B. World Model 
Two kinds of databases (prior information) have been 

utilized in this work. The first one is a prediction of the radio 
profile in a test area of 9 km2 in Hannover, Germany. The 
predicted radio profile has been constructed using a 3D 
deterministic radio propagation prediction model, described 
in [5], with a resolution of 5 m. These data have been 
generated to provide predictions of the average received 
signal strength levels (RxLev), at reference locations, from 
the surrounding GSM antennas at 1800 MHz in our test area 
that contains 6 sectorized cells and four indoor antennas. 
This procedure is produced during the network planning 
stage, and is a useful source for MT positioning. After 
several preprocessing steps, as in [6] and [7], the radio 
profile data was subdivided into separate databases, in each 
are locations served by a certain cell antenna as illustrated in 
Figure 1. 

The second kind is a digital map of the area, generated 
from satellite images. Thus, different features, e.g. water, 
green, building, road, etc., could be easily discriminated. 

Because the goal of this work was to introduce a backup 
to GPS pedestrian positioning, we have extracted locations in 
which a walking person might exist and correlated their 
coordinates to the radio profile prediction data. The result is 
a collection of pedestrian outdoor location databases divided 
according to GSM antenna radio coverage, see Figure 2. 
These databases are used in the update step of our proposed 
positioning algorithm. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Setup 
A measurement campaign has been carried out in an E-

Plus GSM 1800 MHz network by a pedestrian along a route 
of about 1940 m long. RxLev measurements of the serving 
base stations and up to six neighboring stations along with 
GPS position fixes for ground truth have been logged into a 
file for later offline simulations. Furthermore, the GPS 
positions have been used to generate IMU pseudo 
measurements to simulate real ones, so that the feasibility of 
a real IMU employment could be investigated. 

B. Numerical Results 
We have investigated the performance of the tracking 

algorithm by varying transσ from 1% to 10% of the performed 
translation and orientσ  between 1° and 6°. The quality of 
performance is determined according to successful tracking, 
mean, 67 percentile, and 95 percentile positioning errors in 
meters. We consider the MT position is successfully tracked 
if the final position estimate over the experiment route of 
1940 m is not greater than 50 m away from the true MT 

location. All experiments have been repeated 100 times in 
order to get reasonable results. It can be seen – as expected – 
in Figure 3 that the higher transσ  and/or orientσ  are, the lower 
the probability of successfully tracking the MT along the test 
route. However, for transσ  up to 4% and orientσ  up to 2°, 
successful tracking is achieved over 90% of all repeats. With 

orientσ  up to 2° and transσ up to 10%, slightly less than 70% of 
successful tracking is achieved. When orientσ  is increased up 
to 5°, successful tracking is achieved 60% of the times with 
the worst case of transσ . For orientσ  equals 6°, the percentage 
of successful tracking drops below 60% as transσ  increases 
above 4%. 

 

 

Figure 1.  Locations served by three sectors of the same base station. 

 

 

Figure 2.  Outdoor locations categorized after radio coverage of sector 
cells. 

Figures 4, 5 and 6 show that the mean, 67 percentile, and 
95 percentile positioning errors for the different cases are 
less than 20 m, 20 m, and 62 m respectively. This is very 
accurate for most positioning applications and confirms the 
suitability of IMU-based localization to work as a reliable 
back up in case of GPS information outage. 
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Figure 3.  Percentage of successful position tracking with varying standard 
deviations of IMU translation and orientation. 

 

Figure 4.  Mean positioning error. 

 

Figure 5.  67 percentile positioning error. 

 

Figure 6.  95 percentile positioning error. 

V. CONCLUSION 
In this paper we presented a technique based on 

simulated IMU raw data to maintain location information in 
cellular wireless environments for MTs in case of GPS 
outage. The proposed method runs in real time with 
positioning errors acceptable for most location-based 
applications. Thus, it could be considered as a reliable 
alternative in many cases. 

The presented algorithm could also be applied to vehicle 
navigation, where dead-reckoning instruments are available 
and accurate. 
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