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ABSTRACT 
 
Dead reckoning (DR) via direction and distance could 
provide an accurate way of maintaining location 
information for mobile terminals when loss of GPS 
signals occurs. Furthermore, DR would provide reliable 
solutions in indoor/outdoor transitions, street canyons, and 
heavy tree canopies where GPS information is almost 
always inapplicable. Thus, DR is a desirable option for 
security and commercial applications that value position 
information. This paper describes and investigates how 
DR could provide accurate and reliable positioning using 
radio profile databases and map-matching. The proposed 
technique solves both the position tracking and global 
localization problems, so that mobile terminal localization 
could be achieved in case of GPS outage or even without 
any GPS information at all respectively. 

 
1. INTRODUCTION 

 
The first application of mobile location dates back to 

World War II, when it was critical to locate military 
personnel rapidly and precisely in emergency situations 
[1]. In the nineties, the GPS was made accessible for 
commercial applications. Furthermore, the EU is most 
likely to follow the US and Japan in requiring high 
positioning accuracy of mobile emergency calls from 
2010 when the Galileo system will be fully operational 
[2]. However, the benefits of GPS could be limited where 
position information is still needed due to obscured view 
to satellites, lack of a GPS receiver in the mobile terminal 
to locate, or degraded accuracy caused by multipath. 

An alternative to GPS or a backup during GPS signal 
outage with comparable accuracy could be achieved using 
fusion of inertial measurement unit (IMU) raw data with 
already existing cell-ID based methods and map-
matching. The radio profile of a given area can determine 
routes that are covered by each cell antenna. Therefore, 

the computational cost of map-matching algorithms would 
be reduced to a minimum. 

The proposed positioning algorithm is designed to 
solve two problems using the recursive Bayesian filter [3]: 
Position tracking and global localization. In the first 
problem, the initial position is given, either manually or as 
the last GPS fix in case of GPS signal blocking. The main 
task of the algorithm would be to compensate for IMU 
data errors using map-matching. In the global localization 
problem, no initial position is known to the system and the 
algorithm has to calculate the mobile terminal location 
from scratch. This problem is more difficult because the 
algorithm has to handle multiple and distinct hypotheses. 
Solving this problem would make our system totally GPS-
independent. Our proposed algorithm is assumed to be a 
mobile-based technique, where map information is 
provided by network operators. However, the technique 
could be run as network-based if the IMU data is uploaded 
from the mobile terminal (MT) to the operator network. 

The objective of this paper is to investigate the 
feasibility of MT location using IMU raw data with cell-
ID and geographical map information. We examine this 
concept by fusing simulated IMU data with real-world 
cell-id information from cellular wireless networks and 
map-matching in order to achieve MT outdoor position 
tracking and global localization with accuracy comparable 
to that of GPS positioning. Radio maps generated by radio 
propagation prediction tools are used off-line to determine 
road areas covered by every cell antenna in our test area. 
Our experiments will investigate the range of acceptable 
IMU data errors that would allow reliable positioning 
when using real IMU data. 

The rest of the paper is organized as follows. The next 
section presents the basics of the proposed localization 
algorithm. Sections 3 and 4 discuss the motion and world 
models utilized in our work respectively. Experimental 
results are provided in section 5, and the whole paper is 
concluded in section 6. 
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2. THE LOCALIZATION ALGORITHM 
 
2.1. Recursive Bayesian Filter 
 
The recursive Bayesian filter (RBF) [3] is a probabilistic 
framework for state estimation that utilizes the Markov 
assumption (i.e. past and future measurements are 
conditionally independent if the current state is known). In 
the context of the proposed MT localization algorithm, the 
RBF estimates the posterior belief of the MT position 
given its prior belief, IMU measurements, cell-ID of the 
serving base station (BS), and a model of the world. The 
RBF is stated mathematically as 
 

)](),,|([),|()( 111 −−− ⋅⋅⋅= ∑ ttttttt sBelmasspmsopsBel η
         (1) 
 
Where )( tsBel is the posterior belief over the MT 
position ts at time t , andη is a normalization constant to 
ensure that )( tsBel will sum up to one over all states. 
However, normalization is not crucial for filter 
implementation. The term ),|( msop tt is the likelihood of 
the measurement or observation to of the serving cell-ID at 
time t given the current MT position and the world 
model m . It is also known as the observation model. The 
expression ),,|( 11 massp ttt −− is the probability that the MT 
is at ts given it executed the movement 1−ta when it was 
at 1−ts within the space defined by m . It is also called the 
motion model. Finally, )( 1−tsBel is the prior belief over the 
MT position. A complete derivation of expression (1) is 
provided in [4]. 

Algorithm 1 shows how equation (1) is usually 
computed in two steps called prediction and update, 
where )( tsBel − is the posterior belief just after executing 
action 1−ta and before incorporating the observation to . 
Note that MT actions and observations are assumed to 
occur in an alternative sequence. 

 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1: The generic recursive Bayesian filter. 
 
 

2.2. Position Tracking Implementation 
 
In position tracking, the algorithm is designed to 
propagate the initial MT location 1−ts using raw IMU data 
in the prediction step. In the update step, the propagated 
location is matched to a set of location candidates that are 
known to be covered (in radio signal strength terms) by a 
certain cell antenna with a cell-ID identical to that 
received by the MT from the current serving cell. The 
candidate with the minimum Euclidean distance to the 
location computed in the prediction step is considered as 
the new position of the MT. This procedure is described in 
Algorithm 2, where 1−ttrans and 1−tθ are respectively the 
translation and orientation in a 2D Cartesian coordinate 
system at time 1−t .

tIDcellDB − is the database that contains 
coordinate information of locations, covered by the cell 
antenna that serves the MT at time t , and iw is the weight 
of location candidate i . 
 

 
 

Algorithm 2: The position tracking function. 
 
2.3. Global Localization Implementation 
 
Unlike position tracking, the global localization algorithm 
has no information about the accurate MT position at the 
beginning. Thus, it has to resolve the location ambiguity 
and converge to the true position of the MT by tracking all 
probable location candidates and determine their weights 
every time the algorithm is run. When this task is 
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successfully fulfilled, the algorithm is allowed to run in 
the position tracking mode discussed in 2.2. 

As depicted in Algorithm 3, the global localization 
mode will run as long as the number of location 
candidates n is greater than a certain thresholdα . In this 
mode, the prediction and update steps will only run if the 
MT’s traveled distance is greater than or equal to the 
database resolution resDB in order to allow position state 
transition using the database. The updated candidate will 
only be added to the new belief if the location it is 
matched to is not greater than resDB away. Therefore, the 
number of location candidates will decrease after every 
run of the algorithm until their total number is equal to or 
less than the thresholdα . In this very event, the updated 
MT position is simply estimated as the average of the 
remaining candidates, and the algorithm is switched to the 
position tracking mode already described above. The 
global localization procedure is listed in Algorithm 3. 
 

3. MOTION MODEL 
 
The motion model used in the prediction step is simply 
dead reckoning that computes the next location by 
applying the course and distance traveled since to a 
previous position according to the following two 
equations 
 

111 cos. −−− += tttt transxx θ       (2) 

111 sin. −−− += tttt transyy θ       (3) 
 
To investigate the feasibility of IMU raw data we have 
generated IMU measurements with added noise as 
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Where transσ is the standard deviation of the simulated IMU 
translation as a percentage of the translation performed, 

orientσ is the standard deviation of the simulated IMU 
orientation in degrees, and randn is a normally distributed 
random number. Thus the expressions for the predicted 
position are 
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4. WORLD MODEL 

 
Two kinds of databases (prior information) have been 
utilized in this work. The first one is a prediction of the 
radio profile in a test area of 9 km2 in Hannover, 
Germany. The predicted radio profile has been 

constructed using a 3D deterministic radio propagation 
prediction model, described in [5], with a resolution of 5 
m. These data have been generated to provide predictions 
of the average received signal strength levels (RxLev), at 
reference locations, from the surrounding GSM antennas 
at 1800 MHz in our test area that contains 6 sectorized 
cells and four indoor antennas. This procedure is produced 
during the network planning stage, and is a useful source 
for MT positioning. After several preprocessing steps, as 
in [6] and [7], the radio profile data was subdivided into 
separate databases, in each are locations served by a 
certain cell antenna as illustrated in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 3: The global localization function. 
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   else if 1==Mode  // Position tracking mode 
      PositionTracking( tttt moas ,,, 11 −− ) 
  endif



The second kind is a digital map of the area, generated 
from satellite images. Thus, different features, e.g. water, 
green, building, road, etc., could be easily discriminated. 
 Because the goal of this work was to introduce a 
backup or an alternative to GPS pedestrian positioning, we 
have extracted locations in which a walking person might 
exist and correlated their coordinates to the radio profile 
prediction data. The result is a collection of pedestrian 
outdoor location databases divided according to GSM 
antenna radio coverage (Fig 2). These databases are used 
in the update step of our proposed localization algorithm. 
 

 
 

Fig. 1: Locations served by three sectors of the same base station. 
 
 

 
 
Fig. 2: Outdoor locations categorized after radio coverage of sector cells. 
 

5. EXPERIMENTS AND RESULTS 
 
5.1. Experimental Setup 
 
A measurement campaign has been carried out in an E-
Plus GSM 1800 MHz network by a pedestrian along a 
route of about 1940 m long. RxLev measurements of the 
serving base stations and up to six neighboring stations 
along with GPS position fixes for ground truth have been 
logged into a file for later offline simulations. 
Furthermore, the GPS positions have been used to 
generate IMU pseudo measurements to simulate real ones, 

equations (4) and (5), so that the feasibility of a real IMU 
employment could be investigated. 
 
5.2. Results 
 
Within position tracking experiments the initial location of 
the MT is known. We have investigated the performance 
of the tracking algorithm by varying transσ from 1% to 10% 
of the performed translation and orientσ between 1° and 6°. 
The quality of performance is determined according to 
successful tracking and the mean positioning errors in 
meters. We consider the MT’s position is successfully 
tracked if the final position estimate over the experiment 
route of 1940 m is not greater than 50 m away from the 
true MT location. All experiments have been repeated 100 
times in order to get reasonable results. It can be seen – as 
expected – in Fig. 3 that the higher transσ and/or orientσ are, 
the lower the probability of successfully tracking the MT 
along the test route. However, for transσ up to 4% 
and orientσ up to 2°, successful tracking is achieved over 
90% of all repeats. With orientσ up to 2° and transσ up to 10%, 
slightly less than 70% of successful tracking is achieved. 
When orientσ is increased up to 5°, successful tracking is 
achieved 60% of the times with the worst case of transσ . 
For orientσ equals 6°, the percentage of successful tracking 
drops below 60% as transσ increases above 4%. Note that all 
IMU data are raw and have not been filtered before map-
matching. Thus, adding a filter at the IMU output (e.g. 
Kalman filter) still could enhance the percentage of 
successful tracking for the given values of transσ and orientσ . 
Fig. 4 shows that the mean positioning error for the 
different cases is between 15 and 20 m. This is very 
accurate for most positioning applications and confirms 
the suitability of IMU based localization as a reliable 
backup in case of GPS information outage. 
 In the global localization experiments we have 
investigated the percentage of successful localization for 
the different values of transσ and orientσ . As shown in Fig. 5, 
the achieved successful global localization is over 80% 
and 65% for orientσ up to 3° and 6° respectively. The effect 
of transσ on the results is almost not significant, because of 
the 5 m map resolution that makes the update step 
insensitive to the range of translation errors assumed. 
Moreover, there is a slight tendency to increase the 
possibility of successful global localization with 
increasing transσ especially when orientσ also increases, which 
seams counter intuitive. However, the fact is that large 
errors caused by high orientσ values are compensated by 
increasing transσ and the low map resolution that prevents 
quick deviation from the true path. 
 



 
Fig. 3: Percentage of successful position tracking with varying standard 

deviations of IMU translation and orientation. 
 

 
Fig. 4: Mean position error of position tracking. 

 

 
Fig. 5: Percentage of successful global localization with varying 

standard deviations of IMU translation and orientation. 
 
 
 

6. CONCLUSION AND FUTURE WORK 
 
In this paper we presented techniques based on simulated 
IMU raw data to maintain location information for MTs in 

case of GPS outage. Moreover, we introduced a novel 
technique to find the position of a MT without any prior 
information, so that our location algorithm would be GPS 
independent. The proposed methods run in real time with 
positioning errors acceptable for most location-based 
applications. Thus, they could be considered as reliable 
alternatives in many cases. The presented algorithms 
could also be applied to vehicle positioning, where dead-
reckoning instruments are available and accurate. 
 This work can still be extended by filtering (e.g. using 
Kalman filter) the raw IMU data in order to increase the 
probability of successful position tracking and global 
localization. More advanced map-matching techniques 
might also enhance the overall performance. It is planned 
to experiment with real IMU data to verify and validate 
the proposed approach. 
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