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ABSTRACT 
Determining the location of mobile stations could be 
achieved by collecting signal strength measurements and 
correlating them to pre-calculated signal strength values at 
reference locations. This method is advantageous, because 
no LOS conditions are needed, it can work even with one 
base station (BS), and its implementation costs are pretty 
low. However, the correlation process needs an appropriate 
likelihood function such as that provided by Bayesian statis-
tical estimation approaches. They use all available informa-
tion surrounding candidate hypotheses to determine their 
likelihoods. In this paper, we present a Bayesian mobile lo-
cation algorithm, and show its performance by field meas-
urements in a working GSM network. 

1. INTRODUCTION 

The key driver for developing mobile station (MS) location 
technologies in the USA was E-911. In the EU, it was com-
mercial services in the first place, and later E-112 that util-
izes the same techniques. Emergency call location has be-
come a requirement in fixed and cellular networks in the 
USA in 1996 [1] and in the EU in 2003 [2]. Positioning of a 
MS is considered more critical because MS users and hence 
MS originated emergency calls are continually increasing. It 
is estimated that about 50% of all emergency calls in the EU 
are MS originated, and the expected tendency is rising [2]. 
 

While emergency call location could be considered the most 
important of location-based services (LBS) due to its urgency 
for life and property safety, commercial LBS are believed to 
make increasing revenues for network operators who could 
provide customers with attractive and tailored services [3]. 
 

The MS location is usually achieved using satellite-based or 
cellular system based methods [4], [5]. These methods differ 
in terms of accuracy, coverage, cost, power consumption and 
system impact. Satellite-based technologies come in two 
flavours: stand-alone GPS or Assisted-GPS (A-GPS). Main 

drawbacks are power consumption, need of clear view to at 
least four satellites (for stand-alone GPS) and the costs of 
integrating GPS receivers into the mobile terminals. Fur-
thermore, A-GPS solutions require the additional installation 
of reference GPS receivers. 
 

Cellular system based techniques include: cell-id (CI), time 
of arrival (TOA) / uplink time difference of arrival (U-
TDOA), enhanced observed time difference (E-OTD) and 
angle of arrival (AOA). There are many varieties of the cell-
id method [6], [7], namely CI, CI+TA (timing advance) of 
serving cell, CI+TA of several adjacent cells (this is usually 
not the case in GSM networks), and CI+TA+RxLev (re-
ceived signal level). Here, the RxLev measurement can be 
input to an empirical formula or compared with the entries of 
a look-up table in order to estimate distances to base stations 
or yield a location estimate of the MS respectively. The later 
handling is known as database correlation method (DCM) 
[8] – [11]. 
 

The location service is divided into three levels [7] according 
to the accuracy requirements of the different applications. 
The less accurate is the basic service level, which utilizes CI 
methods. Techniques used for the enhanced service level are 
E-OTD, TOA/U-TDOA, or AOA. A-GPS is usually em-
ployed for the extended service level, which is the most accu-
rate location service. 
 

Cell-id methods are the simplest to implement because they 
utilize only network available information. Thus, they are 
advantageous in terms of cost, coverage, and system impact. 
TOA/U-TDOA and E-OTD based techniques need mutual 
synchronization of at least three base stations (BSs) which is 
difficult to achieve. Installation of special antennas at BSs is 
a must for the implementation of AOA methods. Location 
accuracy of TOA/U-TDOA, E-OTD and AOA approaches 
are severely influenced by multipath propagation which is 
the dominant propagation condition in built-up environ-
ments. 



 

Basic service level location methods will still be needed also 
when more accurate technologies are fully available. They 
will achieve positioning for applications with low accuracy 
requirements; they will be deployed in areas of the network 
where more accurate methods are not supported; and finally, 
they will work as backup in case the accurate techniques fail 
for any reason. 
 

Unlike the US mandate, the EU location requirements do not 
specify accuracy or standards. This was another reason that 
pushed toward the implementation of CI methods by EU 
network operators. However, location accuracy is in the 
range of hundred meters up to several kilometers depending 
largely on the environment characteristics, network layout 
and propagation conditions. Therefore, improving position-
ing accuracy of CI techniques is an active research topic. 
 

In this paper, we present a database correlation method 
(DCM) within a Bayesian statistical framework for mobile 
location in GSM networks. The proposed location algorithm 
is a generic one that could also be applied to other cellular 
systems and wireless networks. The mathematical derivation 
and the practical implementation of the proposed Bayesian 
filtering algorithm are provided in the next section. In section 
3, we discuss the model of the wireless environment. Ex-
perimental results are given in section 4. Section 5 summa-
rizes the paper. 

2. THE BAYESIAN LOCATION ALGORITHM 

2.1 Mathematical Derivation of the Bayes Filter 
 

Bayes Filter (BF) [13], [14] is a probabilistic framework for 
state estimation that utilizes the Markov assumption (i.e. 
past and future measurements are conditionally independent 
if the current state is known). In the case of mobile location, 
BF estimates the posterior belief distribution of the MS posi-
tion given its prior belief, a series of RxLev measurements, 
and a model of its world (environment). 
 

The prior belief is a probability distribution over all locations 
of the given cell combined with the TA measurement before 
taking the MS actions and RxLev measurements into ac-
count. The posterior belief is the conditional distribution of 
these locations given the MS actions and RxLev measure-
ments. The world model is a database that contains predicted 
RxLev at the candidate locations. 
 

The posterior belief distribution is expressed as 
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Where  is the posterior belief over the state (posi-

tion) of MS at time ,  is the state at time ,  are the 

measurement data from time  up to time ,  are the 

actions performed by the MS from time 0  up to time , and 
 is the world model. 
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Applying Bayes rule to equation (1) we get 
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Here, actions and measurements are assumed to occur in an 
alternative sequence, although in reality they take place con-
currently. They are separated only for convenience and clar-
ity of the mathematical treatment. 
 

Employing Markov assumption to the first term in the nomi-
nator, and noting that the denominator is a constant probabil-
ity (denotedη ) relative to , equation (2) is rewritten as ts
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With the help ofη , which is also called normalization factor, 
the resulting product will always integrate to1. Thus, 

represents a valid probability distribution. )( tsBel
 

Expanding the right most term in (3) using the Theorem of 
total probability will result in 
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Applying Markov assumption to the first term in the integra-
tion and noting that the second term is simply we 
obtain 
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Expression (5) is a recursive equation that is usually com-
puted in two steps called prediction and update [13], [14]. 
 

Prediction step: 
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Where is the posterior belief just after executing 

the action and before incorporating the measurement , 

and 
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∫ − ),,|( 1 massp ttt is the MS motion model, i.e. the 

transition probability that tells us how the state evolves over 
time as a function of the MS movements. These movements 
are undeterminable without an extra measurement source, i.e. 
inertial measurements. 
 

Update step 
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Where is the measurement model that specifies 
the probabilistic law according to which measurements are 
generated from the state, i.e. measurements are simply noisy 
projections of the state [14]. 
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Both motion and measurement models describe the dynami-
cal stochastic system of the MS and its environment. The 
state at time is stochastically dependent on the state at 
time and the action . The measurement depends 
stochastically on the state at time t . Such a temporal model is 
also known as hidden Markov model (HMM) or dynamic 
Bayes network (DBN) [14]. 
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2.2 Practical Implementation 
 

The Bayes Filter (BF) algorithm derived in the previous 
section cannot be directly implemented on a digital com-
puter. However, nonparametric filters [14] provide imple-
mentable algorithms for the BF. Nonparametric filters (NPF) 
approximate posteriors by a finite number of parameters, 
each corresponding to a region in the state space, i.e. they do 
not rely on a fixed functional form of the posterior. More-
over, the number of the parameters used to approximate the 
posterior can be varied. The quality of approximation de-
pends on the number of these parameters. As the number of 
parameters approaches infinity, NPF tends to converge uni-
formly to the correct posterior under specific smoothness 
assumptions [14]. The NPF approach discussed here ap-
proximates posteriors over finite spaces by decomposing the 
state space into finitely many regions and represents the 
cumulative posterior for each region by a single probability 
value. Such an approach is known as discrete Bayes Filter 
(DBF) [14]. The DBF is also referred to as the forward pass 
of a hidden Markov model. 
 

The DBF approximates the belief at any time by a set 
of weighted location candidates as 
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Where is the i-th MS location candidate and is a 
probability value (also called weight) that determines the 
importance of . The sum of all weights equals1so 
that represents a valid probability distribution. At any 
time, the weight of a location candidate is calculated as 
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Where ,  and are the weights according to the 
measurement model, neighbourhood degree, and strongest 
neighbour respectively. They are calculated at time t as 
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Where M is the number of observed BSs (main and 
neighbouring), i.e. 7max =M , RxLevσ is the standard devia-

tion of the measured RxLev, is the measured 

RxLev from the j-th observed BS, and is the data-

base RxLev prediction value of the j-th observed BS at . 
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Where l is the number of observed neighbour BSs that coin-
cide with the list of the predicted six strongest neighbour BSs 
at , and )(is NDα is a constant bonus value, i.e. 6max =l . 
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Where SNα is a constant bonus value, and is assigned if the 
strongest observed neighbour BS coincides with the pre-
dicted first or second strongest neighbour BS at . Other-
wise, . 
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The final location estimate is calculated from the be-
lief as 
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Where nk < , and is sorted according to . Thus, 
is the average of a certain number ( ) of the best 

weighted location candidate. Expression (13) is also known 
as trimmed average estimate (TAE). 
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TABLE I depicts the implementation of the proposed Bayes-
ian mobile location algorithm when run at time . Note that 
no motion model is integrated, because network measure-
ments are the only source of information. The prior Belief at 
time (denoted ) is initialized over the whole 
state space of the MS candidate locations using the CI and 

TA at time  with initial weights 

t
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1)( = , i.e. the prior 

belief is a uniform distribution over the determined state 
space. 

3. ENVIRONMENT MODEL 

The utilized database has been constructed using a 3D de-
terministic radio propagation prediction model, described in 
[12], with a resolution of 5 m. This database is a by-product 
of the network planning stage and contains location depend-
ent parameter values (e.g. signal strength in GSM networks) 
at reference locations. The provided cell information in the 
interest area include antenna geographical location, antenna 
height, azimuth and tilt, effective isotropic radiated power, 
channel numbers, cell identifiers, etc. 
 



The MS acquires information about its environment (or 
world) through the network measurements. However, the MS 
environment is a stochastic system. Therefore, the network 
RxLev measurements are often noisy and deviate from the 
prediction RxLev values, which are in turn not precise. 
 

In order to enhance the prior belief of the discrete Bayes 
filter, as much information as possible could be extracted 
from the prediction database. This would enhance the corre-
lation process of measurements with knowledge about the 
MS world. Achieving this needs reorganization, partitioning, 
and clustering of the initial prediction database. 
 

Every cell antenna of the test area has acquired a separate 
database, called the cell database (CDB), which contains 
only the locations served by it. Each database entry consists 
of location ID, location coordinates, prediction RxLev from 
serving cell, prediction RxLev values and IDs of the strong-
est neighbour cells, and distance to the serving cell antenna. 
 

Furthermore, every CDB has been divided into sub-databases 
according to all possible TA values (with an assumed error 
of bits); each called cell TA database (CTADB) and 
labelled with a stamp indicating its TA value. The location 
algorithm will process only the CTADB matching the TA 
measurement, thus, reducing the online computational bur-
dens to a minimum. 

5.0±

 

Another interesting aspect can be explained by the help of 
Figure 1, which illustrates the location of a sector cell an-
tenna (black dot), locations served by the cell antenna 
for (red spots), and the sector boundary using the 
azimuth and coordinates of the cell antenna (depicted in 
black), also at . The white areas inside the boundary 
are locations served by other cell antennas. Such locations 
could be determined along with their serving CI and the other 
information as above at all possible TA values for every cell, 
and then stored in separate databases, each called outsider 
locations database (OLDB). 
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Figure 1 – Definition of outsider locations 

When the actual network measurement reports a switching to 
a new serving cell, it is most probably that the true location 

of the MS is somewhere in the white areas (as explained 
above) at least in the first period of time after switching. This 
is very advantageous for the discrete Bayes filter, in which 
the state space is more specified by the concentration of the 
prior belief on locations of more likelihood. 
 
 

 
TABLE I – Implementation of the discrete Bayes filter 

4. EXPERIMENTS 

Field measurements have been collected in a working GSM-
1800 network by a pedestrian using a notebook connected to 
a GSM modem and a GPS receiver that provided true posi-
tion references. The test field is a 9 km2 suburban area in 
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Hannover, Germany, with 18 and 4 sector and indoor cells 
respectively. 
 

The collected measurements have been processed offline 
using the proposed Bayesian location algorithm. We investi-
gated the performance by running the algorithm once with 
only the CTADBs and another once with both CTADBs and 
OLDBs as explained in the previous section. 
 

Using only the CTADBs, the achieved location accuracy was 
as shown in TABLE II. 
 

Error percentiles 67% 95% mean 
Location error 240 m 419 m 216 m 

TABLE II – Location accuracy using only CTADBs 

TABLE III depicts the enhancement of the performance ac-
curacy when incorporating OLDBs into the location algo-
rithm. The improvement of the 67 and 95 percentiles, and 
mean error is 12%, 9%, and 11% respectively. The utilization 
of OLDBs has enhanced prior beliefs when serving cell 
changed, accordingly the Bayesian filtering process could 
perform better with more useful information. 
 

Error percentiles 67% 95% mean 
Location error 211 m 382 m 191 m 

TABLE III – Location accuracy using CTADBs and OLDBs 

Location accuracy depends strongly on the cell size. The 
performance of our algorithm is still more accurate than 
those presented in, e.g. [10], [11], for similar cell sizes also 
using database correlation methods. 

5. CONCLUSION 

The Bayes filter (BF) algorithm calculates the posterior over 
the state conditioned on the measurement data. It is well-
suited to represent complex multimodal beliefs as is the case 
in the problem of MS positioning in wireless networks. BF 
assumes that the world is Markovian. This assumption could 
be considered somehow severe, because it is already vio-
lated in building the world model and during real measure-
ments due to the fact that unmodeled dynamics (e.g. people 
and cars) are not included in calculation despite their influ-
ence on, e.g. multipath, and hence on the resultant RxLev 
value at different locations. However, the proposed approach 
is robust in the face of such assumptions, noisy measure-
ments, and other inaccuracies in the environment model. 
They are handled as close-to-random effects. Another limita-
tion is the approximation of posterior distributions in con-
tinuous environments. This is, however, unavoidable in or-
der to make the location algorithm computationally feasible. 
Field experimental results showed good performance accu-
racies of the implemented algorithm in a suburban environ-
ment with low BS density. 
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