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Abstract—Local scattering in the vicinity of the receiver or
the transmitter leads to the formation of a large number of
multipath components along different spatial angles. A codition
of angular distribution, which is valid for only a uniform li near
array, is proposed in this paper to justify whether the spatal
fading correlation (SFC) remains simple as a Bessel functio If
an angular distribution satisfies the condition, a class of agular
distributions is revealed and results in simplifying the aralysis of
the SFC. To demonstrate its practical use, we apply the contion
to several angular distributions that are considered in preious
works. It is found that cosine and von Mises distributions
follow the condition, whereas uniform, Gaussian, and Laplaian
distributions do not satisfy the condition and then one neesl to
calculate the sinusoidal coefficients for the SFC computati.

Index Terms—Antenna array, local scattering, spatial fading
correlation.

I. INTRODUCTION

In wireless communications, local scattering around trf

In this paper, a condition of the angular distributions is
proposed to justify whether the SFC from a linear antenna
array remains simple as a Bessel function [18, Ch. 1]. For
a class of the angular distributions, the test of the condi-
tion requires only differentiations, which are simpler tha
the integrations that are required in the direct methods Thi
can help to facilitate the analysis of the fading correlatio
in the wireless channels. It is discovered that the proposed
condition defines a group of the angular distributions (see
various families of the distributions in [19, Ch. 7] and [20,
Ch. 5]). It means that if an angular distribution satisfies
the condition, the SFC remains only a simple form for the
calculation. To demonstrate its usage in practice, we aimgly
condition to several angular distributions that are cogr@d
in previous works. It is found that the cosine and the von
Mises distributions follow the condition, whereas the onifi,
the Gaussian, and the Laplacian distributions do not gatisf
e condition and then one needs to calculate the sinusoidal

transmitter or the receiver leads to the formation of a larg@efficients in the SFC computation.

number of multipath components. In multiantenna communi- The gap between this work and the previous works can be
cations systems, the receiver features the correlatomgmdeen as follows. The SFC in various environments is studied
the impulse responses of different pair of antenna elemerifs[7}-[15]. The effects of the SFC on the system performance
namely spatial fading correlation (SFC), as an impact ok lirfir€ investigated in [1]-{6]. In [21], [22, Sec. 2.2.2], ar28],

quality. tedious calculation is avoided by approximating the SFC for

The SFC plays an important role in the performance ana|y§39mall angular spread. The contributions of the paper can be

of a wireless communications system, because most of fgnmarized as follows.

performance metrics, e.g., bit error probability [1]-[3)da

channel capacity [4]-[6], depend on it. Therefore, several
works pay attention to the SFC of antenna array [7]-[15].
In [16,17], the SFC of a circular array is derived for uniform

cosine, and Gaussian angular distributions, respectiwaiich

« A condition is proposed to test the angular distribution
of local scattering in the vicinity of the transmitter or
the receiver, which can happen in the multipath channels
that take into account spatial angle observed by a uniform
linear array.

are chosen as the candidates for fitting several measurement The test requires only the differentiations, instead of the

results. However, the direct computation of the SFC reguire
extensive integrations, which are complicated and possibl

infeasible for a complex angular distribution.
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integrations. For a class of the angular distributions, the
solution of the SFC is knowa priori as a simple form of
the zeroth-order Bessel function. The proposed condition
can be applied to any angular distribution, provided that
the uniform linear array is taken into account.

For another class of the angular distributions that do not
satisfy the proposed condition, we also provide the daawat
of the sinusoidal coefficients fop € (—m,x|. Although
we consider in this paper the azimuth plane,c (-, 7]
[18], the scattering over the half circlg € (—%w, %w] [24]
as well as the 3-dimensional scattering can be extended in
straightforward treatment based on our derivation idea.

Some mathematical notations are involved as follows.
E, {-} is the expectation with respect towhose probability
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density function (pdf) i9,(¢). Jo(-) and Ji(-) are the zeroth and scatterer position, e.g., [34]). The pdf of the azimuth
order and the:-th order Bessel functions of the first kinf.(-) angle¢ < (—n, 7] for the truncated cosine, uniform, truncated
and I (-) are the zeroth order and theth order modified Gaussian, truncated Laplacian, and von Mises distribatiam
Bessel functions of the first kind. The error functierf(z) be modeled respectively as

is defined aserf(z) = %foz e~ du. (-)* is the conjugate

of a complex argument R(-) and 3(-) are the real and the 7 Cecos' (¢ — ), ¢€(j%7r, %w],l§{2,4, b
imaginary components, respectively| denotes the integer 1 € (P — V304, 0+ V304),
part of a variable. 2V30, o€ (V30os —m,m —/30y);

Po(d) =4 1 ~57 (9=’ Y

Il. SPATIAL CORRELATION Vamag CG° ] j_ o ¢€(=m ml;

— 1 \/olp—
For the uniform linear array, the time delay at theth ﬂl%cLe 7y V219 (M, pe(—m,7;
antenna element is given by 2#1},(,{) cone"eS(0=®)  pe (—m, 7], k>0,
1
Yo = ~d(n — 1)sin(9), &) ©)

where ¢ is the wave propagation speed, which is herelwhere& is the mean of each angular distribution, or nominal
equivalent to the speed of light] is the distance between@ndle, and the constants, cc, cr, andeyy are the normal-
adjacent antenna elements, amds the direction of emitting ization factors.

or incoming ray, which is measured from the perpendicular

axis of the array. The rgceived signal is (_:omposed of_K?\' Cosine Distribution

large number of propagating waves along directions, which

are characterized by an angular distribution. The coicelat Note that the cosine distribution supports the angle

between the received signals from theth and then-th from —im to im, since if the domain were given

antenna elements, SFC, can be expressed as [18] from —n to w there will be mirror rays on the third
Lo o and the fourth quadrants. Using the relations!(¢) =
pn7ﬁ = Ed) {ez\]2ﬁj0d(n7n) Sln((vb)} , (2) %l—l
_ ) A () +2 2 (})cos((l—2k)¢) | (see [25, p. 31]), the
where fj is the operating frequency. The above correlation \ ? k=0

model takes into account different levels of the receivgdaii constantc. can be shown as. = ﬁ?- From (4) and (5),
energy caused by fading in such a way that the received sigpalan pe shown that 2!
energy along different angles can be compared to an angular

distribution. Using the expansions of trigonometry fuons 1 I 1
(see [25, Sec. 9.1.42-43] and [26, p. 22]), the SFC can bert = ¢ <ll>/ cos(2k¢)de
calculated from (see [22, eq. (2.5)]) T 2 —37
1 , IS )
Pnn = Jo (EZWfod(n - n)) +2 Z / ) cos(2ke) cos ((1 — 2k)(¢ — ¢)) do
00 k=0 ¥ 27
1
+2 Z Jok (—27Tf0d(n — n)) Ck (3) =0,
= (6)
. 1 ,
+jJor—1 <227Tf0d(n - n)) Sk .
1 l EE
wherec;, and s, are the real and complex sinusoidal coeffifk = 57 ¢ (ll) /_l sin((2k — 1)¢)dé
cients given by 2 2"
™ %l71 %rr
cL = / Do () cos(2ke)de, (4a) +2 Z / ) sin((2k — 1)¢) cos ((I — 2k)(¢ — ¢)) do
—T k=0 -5
si= [ p(@)sinf(2k ~ 1)¢)do. (4 =0
o (7
To evaluate the spatial correlation, the calculation iacine
integrations in (4). ) -
B. Uniform Distribution
I1l. ANGULAR DISTRIBUTIONS From (4) and (5), it can be shown that
The angular distribution can be derived from statistical 1 5+os
distributions, such as cosine distribution [7,27], unifiodis- cp = —/ cos(2k¢)de
tribution [9,28,29], Gaussian distribution [8,21], Lagi@n 230, ¢—V3oy (8)

distribution [23,30,31], von Mises distribution [32], aredc. _

1 _
ot = 2ke) sin ( 2k
(see also other distributions based on geometry, e.g., [33] 2k\/30, cos(2k¢) Sm( \/5%),
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é+V30
Sp = b / ’ sin((2k — 1)¢)d¢ Using the conjugate property of the error functiarfi(z*) =
2\/§cr¢ 3o, erf*(z), we have
1 . N s
= m sin((2k — 1)¢) sin ((Qk - 1)\/§0¢) .
9)
sp = Lege—¥@E-1olg [ J@E-1s
C. Gaussian Distribution 2
. . . . o 1 1 _ 1
For the Gaussian distribution, we hawg = Y orf (1 + &) + —=j(2k — 1)og (13)
| | 7 Vaog V2
Using the result in [35, p. 109], we can see from (43 and (5) ) )
that 7 :
+erf —¢)— —=j(2k —1 .
o L))

L = icGe’ka"; <ej2k¢ <erf <\/§10 (m— ‘5) _jk\/i‘%)
[
1 -
+erf <\/§a¢ (m+ ) +jk\/§a¢>>

on 7 1 -
4 e i2ke <erf <\/§U¢ (m—¢) +jk\/§a¢>

+erf ! (7 + @) — jkV20, . D. Laplacian Distribution
\/50'(;5
(10)

Using the conjugate property of the error functiarfi(z*) =

erf*(2), we have For the1 Laplacian distribution, we havey =

. Using the result in [35, p. 133], we

R -
l1—e Ve Cosh(iﬂq@)
have forg € (—m, )

_ 1 —2k2%062 2k 1 7 .
Cr = 5cGe R <e erf N (74 @) + jkV20,

+erf <\/§1% (7 — @) —jk\/§0¢>>> .

(11)
V26 —LV2¢
«%@<%ﬁwe¢ °
Using the result in [35, p. 109], we can show from (4) and 7% .
(5) that (_é\/i cos(2ke) + 2ksin(2k¢))‘ )
VB A VEs - pe(—m,0);

1
T T aaee
7%

1 4 — ks (0—9)°
Sp = ¢ sin((2k — 1)g)e *7¢ d
©= Jomog G/_w (( )®) )

C = 1 -
) 1 1 -2V2¢ LV2¢
<ej(%_l)¢ (erf< (1~ @) — —=j(2k 1>ff¢> Vare < EEE

1 i ’
(a\/icos(Qk(b) + 2k sm(?k(b)) ’qﬁ__ﬂ) ;

\/§0¢> \/5 3
, o (U—{ﬁ\/i cos(2ke) + 2ksm(2k¢)) Lﬁ i
- — — 1 z 1 T 0,7),
+erf (\/§U¢ (m+¢) + \/5‘](% 1)a¢,>> +§Qi4kzea\/§¢e_a\/§¢ $€0,m)
ieh-1)3 1 1 ’ .

PRSTCTSYY (erf < Toon (m =)+ (2K = 1)%) (_é\/i cos(2ke) + 2ksin(2k¢)) \M) :

1 - 1 _ B N B
+erf (\/§U¢ (m+¢) — Ej(% — 1)0¢,>>> . = mq (cos(2k¢) — cosh <£ﬂ¢> e 75 V2 ) .

(12) (14)
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Using the result in [35, p. 133], we have for (—m, )

135 — 13
LD _e7s P 7g V2P
V204 —72+(2k-1)

7%

(__\/ism((zk —1)¢) — (2k — 1)
COS((2]€ - 1)¢)) + m
. V3 =0 7%
o 7 V¥ e7s (o’l¢ 2

sin((2k

— (2k — 1) cos((2k — 1)9)

Sk =
— 1 26 L2
1 oL 1 o U¢\f¢ea¢\f¢
\/§U¢

+m ¢el0,m),

— (2k — 1) cos((2k — 1)¢)) [_J ,

o (é; P 1)2) o <(2k — 1) sinh <0i¢\/§<5>

At + %2\/58111((2/{ - 1)¢)> .
¢

(15)

E. Von Mises Distribution

For the von Mises distribution, the expressieifos(%) =
In(k) + 2 Y Ix(k) cos(kdy) (see [25, eq. (9.6.34)]) results
k=1

1 —
encos(-Pdg

in com = = 1. Using the relation

wtot) |
e®s(9) = Io(k)+2 3. Ii(r) cos(ke) (see [25, eq. (9.6.34)]),

we have from (4) akn:d1 (5)
- mcm <10(,{) / cos(2kp)de + Z In(k

[ i (cos(3ke — ¢) + cos(kp — ¢)) d¢>

- 7TIO CVM Z

(sm(Qkﬂ' — g?)) — sin(—2k7m — (5))
-0,

¢€ (_ﬂ—a 0)7

holds forme{0,1,...,
the n-th antenna elements in (2) yields

dp+ Y Ii(k)
k=1
/7r sin((3k — 1)¢ — ¢) +sin((k — 1)¢ — ¢3)d¢>

7TIQ CvM Z

(cos 2k — 1)1 — @) — cos(—(2k — )7 — Qg))

_ 27r12 e <10(n) / " sin((2k — 1)9)

-7

(17)

IV. ANGULAR DISTRIBUTION CONDITION
In this section, we establish the condition of the angular

distribution from which the SFC reduces to the first term in

3).

Proposition 1 (A condition of angular distribution):

Let ps(¢) be the pdf of an angular distribution, which
fully supports the angley € (—m, 7], i.e., pg(¢) # 0 for

¢ € (-
times, whereM € {1,2,3,..

m, 7). Let the pdfps(¢) be differentiable up t@M
.} is an integer. If the condition

dm
= TP (¢)‘
=7 d¢ v p=—m

2M}, the SFC between the-th and

dm

o (18)

p0)

pu = o <%27Tfod(n - m) | (19)
Proof: See Appendix A. |

Some remarks on Proposition 1 are as follows.

« When the condition in (18) is satisfied, the result in (19)
is the same as in (2), in which, ands; are zero.

« Proposition 1 holds even whel/ tends to the infinity,
sincec;, and s, can be written as the infinite series of
Zeros.

o The proposed condition raises the relation of the local
scattering to the Clarke/Jakes’ model.

o It is obvious that the SFC in (19) under the condition
in (18) does not depend on the distribution of associated
angles. The result of obtaining only the Bessel function
closely coincides with [36], [23, eq. (32)]. The difference
from [23,36] is that a particular type of the distribution
of ¢ is assumed therein, while in Proposition 1 no certain
distribution of the angle is assumed.

« Furthermore, let the angle split intg = ¢ + &,
where ¢ is the nominal angle or mean angle, ahdis
its deviation. The approximation for the small angular
spread,sin(¢ + 64) = sin(@) + 4 cos(¢), (see [21],
[22, Sec. 2.2.2], [37], and [23]) is not taken into account
during the proof.

o From a functional analysis point of view, the condition
in (18) may be viewed as a multiple derivative form
compared to Lipschitz condition (see [38, p. 32] and [19,
p. 320]).

Next we examine whether any of the probability distri-

butions under consideration produces fading that folldwes t

(16) Bessel function from the Jakes’ model.
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A. Cosine Distribution

For the cosine angles, we have

%m(@
111 .
#Cl kz::O (;lc)J j_l (l - 2k) mE{l, 3,.. .}; (20)
_ Jsin (0= 2k)(0 - 9))
3l-1 .
#Cl kz::O (;lc)J _(l - 2k) me{2,4,...}.
cos (L = 2k)(¢ — ),

Forme{l,2,...}, the definite values of and —= result in

am "
d¢7p¢(¢) o
!

;ﬁffclgé%(é)fn+l(l__2kyn me{l,3...};
_Jcos (—(— l2/€) ) sin (1 — 2k)7) ,

sin (— (I — 2k)¢) sin ((I — 2k)m),
-0,

(21)

K

which implies that for any the condition{-=p, ()
0 holds in the case of the cosine distribution.

B. Uniform Distribution

It is clear that the uniform distribution provid%‘%p¢(¢) =

0. However, the uniform distribution does not follow Propo- Using the relatiore’ °°5(®) = (k)
sition 1, because the uniform pdf does not support the f

angular existence € (—m, 7], i.e. there existsp such that
py(¢) =0 for g€ (—m, 7.

C. Gaussian Distribution

For the Gaussian distribution, we have

am (6) 1 ﬁ@bf@z
—_— = ——cge
d(bmpd) V27moy ¢
Laml (22)
TNk Cm.k ¢ - q; m—2k’
kZ:O oy Cm(6=9)

wherec,, ;. is the coefficient, which also can be drawn from d¢mp¢(¢)

the Hermite polynomial [25, Ch. 22]. It can be shown that

dam T
d¢7p¢(¢)

p=—m

m—2k

1 1 _

— ——Cm T — (23)
fmo, G Z (02)m—Fk ik (( ¢)

é(w—&)z m—2k e”'li(_w_(bﬁ) .

- (-n-9)

lﬂgee [25, eq. (9.6.34)]), we have

If m =1, we have

d T 1 1 - _2;2 (”*&)2
—_ = ——C — e e
d¢p¢(¢) b \/%005 0.35 G ((ﬂ— (b)

(1)
+(7T+QZT>)62(T§’( )

(24)
It can be easily seen that if 0, the derivative

™
d%%((b) does not remain zero. Therefore, the Gaussian
p=—m

distribution does not satisfy the conditioﬁ%p¢(¢)
0.

e

g=—m

D. Laplacian Distribution

The derivative of the Laplacian distribution can be written
as

m L\/i —h _
o (£v2) e 924
1 1 m (%\/ilaﬁ—él o
v@wCL(_ggvﬁ) e , ¢<}¢)
25

TPeld) = {

For g€ (—m,7), we have

dm T 1 1 " A ()
— = c —V2) e7s

1 "ot
B (__\/5> oV +¢>)

¢

(26)
One can see that thewLapIacian distribution, in generals doe
not provide iﬁ%p¢(¢)‘¢:,ﬁ =0.

E. Von Mises Distribution

23 Ii(k) cos(ko)
k=1

qm
d¢7p¢(¢)
1 = _ %(m-l—l) m
mlo (k) kzzzl( 1) B K m€{1,3,.--}; (27)
_ J Ik(k)sin(k(¢ — 9)),
1 _1\impm
wlo(k) kgl( 1) k m€{2,47...}.

I (k) cos(k(¢ — q_S)),
One can see that when is an odd number, the difference of
both terms results in

dm T
p=—m
w2 L (DR ()

m€{1,3, .. .};
_ cos (ko) sin(kT),
1 9N (_q)smpm
ﬂIO(K)2k§::1( 1) k Ik(ﬁ) m€{2a47"'}1
sin(ke) sin(k7),
-0,
(28)



SPATIAL FADING CORRELATION FOR LOCAL SCATTERING: A CONDITON OF ANGULAR DISTRIBUTION 6

which provides that the conditiogi(;%p(z,w)‘ =0holds __ 1

. L p=—m = 0.9H

for any nominal directionp. £ 0sl
- U.

We find that only one notable angular distribution, the vag o7l
Mises model [32], satisfies the condition. The cosine angufg 0:6,
distribution model [7,27] is also tested for the conditiorda g 5|
found to satisfy it; however, the cosine distribution modat 2 41
never been regarded as a sound angular distribution mo@ 3
In nutshell, the condition is beneficial only for one notablgs ¢l
angular model, i.e., the von Mises distribution, where g 0.1k
leads to obtaining a simple formula for the SFC. For oth{” 0 : TP
distributions which are usually chosen as the popular abat o 1 zAmem?a eler‘;em i‘:’]dex difference —
models [8,9,21,23,28]-[31], one will have to calculate the
SFC through tedious computations without benefiting froen t}’I‘Jig. 1. The spatial fading correlation of several angulatritiutions as a

DI’ODOSGd condition. function of antenna element index differenae— 7 for the nominal angle
¢ = 0° and the angular standard deviatier), = 20° with Ng = 107
independent simulation runs.

—Jo (%27rf0d(n —n))
von Mises: Simulation

g — — Uniform: Theory
Wa o Uniform: Simulation
Y - - Gaussian: Approximation
N o Gaussian: Simulation
“““ Laplacian: Theory

a4 Laplacian: Simulation

corr

-~ — =
T

O~
~pm Ty
7 8

i

e T TZ\M\
re
6

1
O

V. NUMERICAL EXAMPLES

The SFC computation for the Gaussian angular distribution
needs to calculate the error functions with complex argusen
in (11) and (13). Since an exact method to calculate such erfgowever, the method in (29) fails in computing the SFC. The
functions with the complex arguments does not exist in th¥ave propagation speed is assigned:-as3 x 10° m/s. The
literature, a well-known approximation is given by (see,[2%perating frequency is assumed to be on the ultrawideband

eq. (7.1.29)] and [39, eq. (5)]) region, i.e., fo = %(10.6 + 3.1) x 10° Hz. The antenna
1 ) element separation distance is chosen as a half of wavehlengt
erf(z +jy) = erf(z) + 5—e™* (1 —cos(2zy) +jsin(22y)) ie. d = §(£) = 0.0218978 m. According to (2), the
1 , & 1 L random evaluz%[tion o]f the SFC is chosen as the sample mean
+—2e v Z PN an P = NLR_ZnRR:le?JQ”fO_d(”—”)_“”(‘%R), where Ny is the
=1 number of independent simulation runs.
(fa(z,y) +igalz,y)) + e(z,y), In Fig. 1, we consider the SFC as a function of the difference
(29)  of the antenna element indices. Note that the difference of
where f; (z,) and g;(z, y) are given by the antenna indicess — 7 is valid for only the uniform
~ linear array. Forn — n = 0, the SFCs of all the angular
fal@,y) = 2x — 2x cosh(ny) cos(2zy) distributions become unity, since the received signal at th
+ nsinh(ny) sin(2zy), (30a) same antenna element is fully correlated to itself. When the
gir(z,y) = 22 cosh(ny) sin(2xy) diffe_rence of the antenna element indicgs increases, ghalsi
+ i sinh(fiy) cos(2zy), (30b) at different antenna elements are partially correlatechcde

the SFC is lower than one. For the von Mises distribution, the
and the approximation erroe(x,y) is on the order of simulation results coincide with the Jakes’ model, since th
% ~ 10716, Alternatively, an available MATLAB von Mises and the cosine distributions follow the condition
package is developed in [40]. Due to the lack of the utilitd an(18), i.e., their sinusoid coefficients ands; are zeros. The-
the random number generation of the cosine distributioa (seretically, both angular models should provide the same SFC
[19] and [20]), we omit the simulation for the cosine angulaas the Jakes’ model. Regarding the uniform distributioe, th
distribution. The Laplacian random number is calculatednfr simulation results well coincide with the theoretical gtityn
[41, p. 94]. The von Mises random number is generated IBpr the Laplacian angular distribution, the simulationuttss
a method presented in [42]. Since the correlation function correspond to the theoretical derivation. Taking into aecdo
(19) is independent of the angular standard deviatignany the Gaussian angular distribution, the numerical resilth®
value of x for the von Mises angular distribution is valid.SFC closely coincide with the theoretical results. However
However, we found that only a small value efsubstituted the computation of the SFC involves the summations of two
into [42] can provide accurate results to (19). For simplici sinusoidal coefficients. In the case of the Gaussian angular
we adoptk = 1. In principle, the cosine and the von Misedlistribution, each sinusoidal coefficient requires the siation
angular distributions should correspond to (19). of two terms, each of which is the error function with the
We approximate the infinite summation in (3) by using onlgomplex argument. Since the error function is approximated
a finite number of the first0° terms for the uniform and the with a finite number of summation terms, the remained infi-
Laplacian angular distributions and the figst terms for the nite term in the complex-valued error function approxiroati
Gaussian angular distribution. For the infinite summation ieads to the cumulative errors in the final SFC computation.
(29), the first10® terms are added altogether. We found thathis approximation error results in the mismatches between
the approach in (29) and the method in [40] provide neartiile numerical results and the theoretical results, whieh ar
the same result in computing the complex error functionoticeable in the logarithm scale of the SFC for 7 > 4.
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VI. CONCLUSION At the 2M-th by-part integration fod € {1, 2,...}, we have
A new perspective on the SFC is presented. The conditiBM induction
for obtaining a simple formulaly (127 fod(n — 1)) for the M o 1\2" gzm-1 a
SFC is exposed by the test of the angular distribution, i.e.ck = »_ (—1) (—ﬁ) WW(@
= m=1

ar T = i it P=T (35)
d¢mp¢(¢) = 0. We have applied the proposition to the 1\ 2M g2M
cosine, unﬁ‘(_)rnTI, Gaussian, Laplacian, and von Mises distri - (—%> / (WW(@) cos(2ke)do.
butions. It has been found that the cosine and the von Mises

distributions absolutely lie in this kind of the distribois, If p, () is differentiable up t@M times, the termwm(qb)
whose SFC yields/y (127 fod(n — n)). The results of the remains constant. We have

proposition coincide with those of the classical method for M 1\2" g2m-1 7
. _ _q\ym—=1({ _ =
the computation of the SFC. cr = mZ:l( 1) ( 2k> d¢2m*1p¢(¢) o
APPENDIX A 1\*M a2 B
- —= — 36
PROOF OFPROPOSITION1 < 2k> <d¢2Mp¢(¢) /,,, cos(2k@)de  (36)
The proof is based on the by-part integrations for bgth M 1 1\2m g2m-1 E
ands;. In what follows, we show that, = 0 ands;, = 0. = Z(_l) <—ﬁ> 7d¢2m_1p¢(¢) o
Let u1 = py(¢) and dv; = cos(2k¢)d¢ be the variables m=1 i o=
of the integration by parts. Sincéu; = (%qu((b)) d¢ and It can be seen that ":WT ps(¢)| s zero for allme
v1 = 57 sin(2k¢), we have {1,2,..., M}, we havec, = 0. -
1 Let u1 = py(¢) anddvy = sin((2k — 1)¢)d¢ be the vari-
Ch = oF (p¢((b) sim(21~c<;5)|g:_7r ables of the integration by parts. Sinde; = (%p¢(¢)) do
T/ d andv; = — 51 cos((2k — 1)¢), we have
- [ (Ggpete))sinzronas) @ |
S st = =g (pol@)ost2k - Va7,
—5p [ (Ggpete)) sinCzronao. )
T (—¢ ) cos((2k — 1)¢)d¢)
Let us = 45py(¢) anddvy = sin(2k¢)d¢ be the variables (37)
of the integration by parts. Singtu, = (d%;p¢(¢)) d¢ and ~ ok ( o(7) = py(=))
1
vy = —5 cos(2kg), we have / d B
] tar1 | (G570 cost(2k = Voo,

Let us = @qu(gb) anddvs = cos((2k — 1)¢)d¢ be the vari-

e ables of the integration by parts. Sinde, = (d%qu(gb)) do

o = (—%)2 ( (d%mw)) cos(2ko)

T 2
_/ (d%&p¢(¢)> cos(2k¢)d¢> andv, = 5 sin((2k — 1)¢), we have
N d P 2 L (ps(m) — psl—m)
S = b ™) — b —T
= <—%> @IM(@ . 2k = 11 d .
2 o2 +7< —ps(0) | sin((2k — 1))
- <‘i> / <dd7>2p¢<¢>) cos(2k)do. (2k = 1)° <d¢’ ) b=
—T ™ d2 .
Inferring from (31), we have - /,,, (?&p¢(¢)) sin((2k — 1)¢)d¢>
2 T 1
o — <_i> %w) 7 = 57— Pe(m) = po(~))
N 9 L [ (@) sn(2h - vy
_ <_%> / (?&p¢(¢)> sin(2k)do. 2k —1)% ). \de?"*?
_F (38)
Inferring from (32), we have Inferring from (37), we have
1\? d " 1\ @ " 1 1@ !
o= (gr) @@, () apme@| =g 0 elom) - i )|
1\* /™ /g4 1 T /43
- <‘ﬁ> /4 <d7)4p¢(¢)> cos(2k¢)d¢. BT L, <d7)3p¢(¢)> cos((2k = 1)¢)d¢.

(34) (39)
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Inferring from (38), we have [11]

1 1 d? T
Sk = 1 (pdv(ﬂ') —p¢(—7r)) - m wp¢(¢) — [12]

1 [ d*
+ — — sin((2k — 1)¢)do.
rrsmrl Ml E ) EUCIEEC IS
(40)
14
At the 20 -th by-part integration foll/ €{1,2,...}, we have [l
by induction 5
M . 1 2m—1 dg(mfl) ™ [ ]
S = mz:;(—l) (m) Wp¢(¢) .
1 s d2]\,{ [16]
+ sin((2k — 1)¢)do.

s | (ggmet@) sntczk = e
Hp%¢ﬁsdﬁaemmbbupuﬂWﬁnms&hemn@%%pa¢)
remains constant. We have

M 2m—1 _ ™
1 d2m=1 [18]
sK = G ( ) —5Ps(9)
;é; 2k — 1 dgp2(m—=1) b=—m [19]
1 d2M ™
i - [20]
+ i (gt [ sin(2 - oo
M 1 2m—1 dg(m_l) ™ [21]
_ _1\ym—1
__m:f b (2k—1) d¢mmfnp¢wﬂ¢:7ﬂ' 22
(42)
It can beseenthat@§§%3%1%(¢)ZZiﬂiszeroforaHnle [23]
{1,2,..., M}, we haves; = 0. 24
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