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Abstract—We consider the transmission rate over the mul-
tiantenna ultrawideband channel taking into account antenna
element time delays. Some algebraic inequalities are explored
to formulate the upper bounds on channel capacity. For an
uncorrelated fading, the upper bounds can be derived in closed
forms. Numerical examples illustrate that in IEEE 802.15.4a
channel model, i) the channel capacity tends to be limited when
the number of rays increases, and ii) non-line-of-sight channel
provides more capacity than line-of-sight channel.

Index Terms—Ultrawideband, multiantenna, channel capacity.

I. INTRODUCTION

As most ultrawideband (UWB) systems operate on sev-
eral Gigahertz (GHz), an accurate timing characterization is
required in order to investigate a real system performance.
The accurate timing characterization can be made possible
by considering the propagation time along the transceiver.
An important feature is the time delay induced by the signal
wavefront propagating across antenna elements at each side.

Modeling the channel impulse response to capture spa-
tial characterization, especially angle, is rather diversified. A
through framework is the extension of Saleh and Valenzuela’s
cluster model to the directional channel impulse response (see
e.g. [1, eq. (6)] at 7 GHz and [2, eq. (15)] at 2.4 GHz). Recent
time delay is modeled including the propagation effect across
different antenna elements [3]. However, the channel impulse
response in [3] does not take into account the cluster of the
rays, which is the attribute of the radio propagation [4].

In this paper, we consider the transmission rate over the
multiple-input-multiple-output (MIMO) UWB channel based
on the IEEE 802.15.4a channel model including the antenna
element time delay (AETD) and an uncorrelated fading. The
novelty, merits and contributions can be expressed as follows.

• The novelty of the paper is the approximate determinant
upper bound, which appears lower than the well-known
Jensen upper bound and also computationally simple for
the uncorrelated fading.

• The merits of the paper are the closed forms of the upper
bounds on the channel capacity, which is complicate and
seems difficult to be found in a closed form.

• The contributions of the paper include the channel statis-
tics of the IEEE 802.15.4a channel model and the eval-
uation of the channel capacity, by means of its upper

bounds, over the standard channel in conjunction with
the AETD.

Some algebraic notations are involved as follows. log(·)
denotes the logarithm function of any base. j =

√−1 is the
unit imaginary number. �(·) and �(·) are the real and imag-
inary parts, respectively. � is the (element-wise) Hadamard-
Schur product. ∗ is the convolution. δ(·) is the Dirac delta
function. (·)T is the transpose. (·)H is the Hermitian transpose.
| · | is the determinant of a matrix or the absolute value of
a scalar. I(N) denotes the identity matrix of N dimensions.
(·)−1 is the inverse. Ex{·} is the expectation with respect to
x. A � B means that B−A is positive semi-definite. Γ(x)=∫∞
0

e−ttx−1dt is the Euler gamma function. x ∼ N (μx, σ
2
x)

means that x is a Gaussian random variable distributed with
mean μx and the variance σ2

x. vec(·) is the column-stacking
vectorization. F{g(t)} =

∫∞
−∞ g(t)e−j2πftdt is the Fouriér

transform of g(t). The relation u(x) = O(v(x)) means that
u(x) is of order less than or equal to v(x).

II. FREQUENCY-SELECTIVE MIMO CHANNEL CAPACITY

Consider a point-to-point communication transceiver con-
sisted of Nr receiver and Nt transmitter antenna elements, re-
spectively. The received signal y(t)∈C

Nr×1 can be expressed
as

y(t) = H(t) ∗ x(t) + n(t), (1)

where x(t)∈C
Nt×1 is the transmitted signal, H(t)∈C

Nr×Nt

is the MIMO channel, and n(t)∈C
Nr×1 is the additive noise.

Theorem 1 (frequency-selective multiantenna channel capacity):
Given the frequency-selective channel H(t) with L̃ multipath
components assumed to be known at the receiver and
unknown at the transmitter, the channel capacity is provided
by

C = max
Σxx(f)

∫ 1
2 W

− 1
2 W

log
(|I(Ň) + M(f)|)df, (2)

where Σxx(f) is the power spectral density (PSD) matrix
of the transmitted signal, W is the signal bandwidth, Ň =
min(Nt, Nr) is the minimum number of the transmitter and
receiver antennas, and M(f)∈C

Ň×Ň is the matrix given by

M(f) =

{
Σ−1

nn (f)HL̃(f)Σxx(f)HH
L̃
(f), Nr ≤ Nt,

Σxx(f)HH
L̃
(f)Σ−1

nn (f)HL̃(f), Nr > Nt,
(3)
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with HL̃(f) being the Fouriér transform of the channel and
Σnn(f) being the PSD of the stationary Gaussian noise.

Proof: See [5].

A. Ergodic Capacity

Assume that there exist Ñ random parameters, which are
collected in η∈R

Ñ×1, residing in M(f). When each element
of η is an ergodic process, the ergodic capacity is written as

C̄ =
1

ln(2)

∫ 1
2 W

− 1
2 W

Eη

{
max

Σxx(f)
ln (|I + M(η, f)|)

}
df. (4)

B. Power Constraint

In (4), the maximization is performed under the constraint∫ 1
2 W

− 1
2 W

tr (Σxx(f)) df ≤ P , where P is a limited power.

C. Power Spectral Density Constraint

For the UWB system, the power constraint should be
replaced by the PSD constraint Σxx(f) � Φxx, where Φxx∈
R

Nt×Nt is the limited PSD matrix of a certain regulation.

III. IEEE 802.15.4A CHANNEL MODEL

Based on the Saleh-Valenzuela model [4], the impulse
response of the IEEE 802.15.4a channel in complex baseband
can be expressed as [6]–[8]

h(t) =
L∑

l=0

K∑
k=0

a[k, l]ejυ[k,l]δ(t− T [l] − τ [k, l]), (5)

where L+1 is the number of clusters, K+1 is the number of
multipath rays assumed to be equal in each cluster, a[k, l] is
the tap weight of the k-th component in the l-th cluster, υ[k, l]
is the corresponding phase shift, and τ [k, l] is the delay of the
k-th multipath component relative to the l-th cluster arrival
time T [l]. Some channel features can be described as follows
[8].

• The number of clusters, L + 1, is a Poisson random
variable with the probability mass function

pL(L) =
1
L!
L̄Le−L̄, (6)

where L̄ is the mean of L and tabulated in [8].
• The small-scale amplitude |a[k, l]| is a Nakagami random

variable with probability density function (pdf)

p|a[k,l]|(x) =
1

Γ(m)
2
(m

Ω

)m

x2m−1e−
m
Ω x2

, m ≥ 1
2
,

(7)
where m = Ω2

E{|a[k,l]|4}−Ω2 is the m-factor of the Nak-
agami distribution, Ω = E

{|a[k, l]|2} is the mean-square
value of the amplitude. The Nakagami m-factor is a log-
normal random variable, whose logarithm has a mean μm

and a standard deviation σm, which depend on the delay
by μm(τ) = μ0 − kmτ , and σm(τ) = μ̃0 − k̃mτ , with
the mean factors μ0 and km, and the standard deviation
factors μ̃0 and k̃m. For the first component of each cluster,
the Nakagami m-factor is deterministic and independent
of the delay, i.e. m = m̃0. The mean of the amplitude is

given by E|a[k,l]| {|a[k, l]|} = 1
Γ(m)Γ

(
m+ 1

2

) (
Ω
m

) 1
2 [9,

eq. (17)]. We model the amplitude a[k, l] as

a[k, l] = ι|a[k, l]|, (8)

where ι is the sign of the amplitude with an equi-
probability of positive and negative values, i.e. with the
pdf pι(x) = 1

2δ(x − 1) + 1
2δ(x + 1). The mean of the

small-scale fading becomes zero, i.e. Ea {a[k, l]} = 0.
• The phase shift υ[k, l] is uniformly distributed in [0, 2π).
• The inter-cluster arrival times are distributed as

p(T [l]|T [l − 1]) = Λ[l]e−Λ[l](T [l]−T [l−1]), (9)

where Λ[l] is the cluster arrival rate assumed to be
independent of l.

• The arrival time of the zeroth path in each cluster is zero,
i.e. τ [0, l] = 0. The ray arrival time is a mixture of two
Poisson processes with the conditional pdf

p(τ [k, l]|τ [k − 1, l]) = βλ1e−λ1(τ [k,l]−τ [k−1,l])

+ (1 − β)λ2e−λ2(τ [k,l]−τ [k−1,l]),
(10)

where β is the mixture probability parameter, λ1 and λ2

are the ray arrival rates.
• In [6], the exact expression of the PDP is given by

E
{|a[k, l]|2|τ [k, l]} =

1
γ[l] ((1 − β)λ1 + βλ2 + 1)

Ω[l]e−
1

γ[l] τ [k,l], LoS,
(11)

and (12) for some NLoS scenarios, where Ω[l] is the
energy of the l-th cluster and γ[l] is the intra-cluster decay
time constant, χ is the attenuation of the first component,
γr determines how fast the PDP increases to its local
maximum and γ1 determines the decay at later times.
For any cluster l in the NLoS in [6]–[8], we shall imply
(13). The intra-cluster decay time constant follows

γ[l] = kγT [l] + γ0, (14)

where kγ describes the increase of the decay constant
with the delay. The integrated energy of the l-th cluster
is dependent on 10 log(Ω[l]) = 10 log

(
e−

1
Γ T [l]

)
+ Mc,

where Mc ∼ N (0, σ2
c ) with the standard deviation σc.

For the logarithm of base 10, we can write in linear scale

Ω[l] = e−
1
Γ T [l]10

1
10 Mc . (15)

IV. MULTIANTENNA CHANNEL MODEL

A. Antenna Element Propagation Delay

Assume that the antenna configuration at both ends is
uniform linear array, where two adjacent antenna elements
are separated by the distance d. The emitted wavefront has
an angle θ ∈ (−π, π] with respect to the normal direction
of the transmitter antenna array, named angle of departure
(AoD). The received wavefront comes up with another angle

799



E
{|a[k, 1]|2|τ [k, 1]

}
=

γ[1] + γr

γ[1] (γ[1] + γr(1 − χ))

(
1 − χe−

1
γr

τ [k,1]
)

Ω[1]e−
1

γ[1] τ [k,1], NLoS in office and industrial. (12)

E
{|a[k, l]|2|τ [k, l]} =

γ[l] + γr

γ[l] (γ[l] + γr(1 − χ))

(
1 − χe−

1
γr

τ [k,l]
)

Ω[l]e−
1
γl

τ [k,l]
, NLoS in office and industrial. (13)

φ ∈ (−π, π] with respect to the normal direction of the
receiver antenna array, named angle of arrival (AoA). For
the k-th cluster and the l-th path, both the AoD and the
AoA induce the propagation delays1 1

c (nt − 1)d sin(θ[k, l])
and 1

c (nr − 1)d sin(φ[k, l]) at the nt-th transmitter and the
nr-th receiver antennas, respectively, where c is the wave
propagation speed.

The impulse response, which captures the time delay across
antenna elements at both sides, can be written as

hk,l
nr,nt

(t) = δ(t− ψnr,nt [k, l]), (16)

where the propagation delay ψnr,nt [k, l] is given by

ψnr,nt [k, l] =
1
c
d ((nt − 1) sin(θ[k, l]) + (nr − 1) sin(φ[k, l])) .

(17)
For d = 9 cm and c = 3 × 108 m/s, the smallest delay of
the (2, 1)-th link is ψ2,1[k, l] = 0.3 sin(θ[k, l]) ns. For any
θ[k, l] ∈ (−π, π], the propagation delay lies in [−0.3, 0.3] ns
and can have a significant role in the UWB systems. The above
time delay is implicitly mentioned in a design of the integrated
circuit [10].

B. Effective Channel Model

The effective channel impulse response hnr,nt(t) = h(t) ∗
hk,l

nr,nt
(t) can be shown as

hnr,nt(t) =
L∑

l=0

K∑
k=0

αnr,nt [k, l]δ(t− T [l] − τ [k, l] − ψnr,nt [k, l]),

(18)

where αnr,nt [k, l] is the antenna-dependent complex amplitude
given by αnr,nt [k, l] = anr,nt [k, l]e

jυnr,nt [k,l].

C. Random Parameters

In the system discussed previously, there are Ñ =
4KLNrNt + L(K + 1) + 1 random parameters, i.e. η ∈
C

(4KLNrNt+L(K+1)+1)×1, which can be written as

η =
[
aT υT φT θT δT Mc

]T
, (19)

where a ∈ C
KLNrNt×1, υ ∈ R

KLNrNt×1, φ ∈ R
KLNrNt×1,

θ∈R
KLNrNt×1, and δ∈R

L(K+1)×1 are given by

a = vec(A), υ = vec(Υ), φ = vec(Φ), θ = vec(Θ),

(20a)

δ =

[
T [1] · · · T [L] τ [1, 1] · · ·
τ [1, L] τ [2, 1] · · · τ [K,L]

]T
,

(20b)

1The relative propagation delay can be negative, since the time reference
of the antenna array is at the first element.

with A ∈ C
KNrNt×L, Υ ∈ R

KNrNt×L, Φ ∈ R
KNrNt×L and

Θ∈R
KNrNt×L given by

A =

⎡
⎢⎣

vec(A[1, 1]) · · · vec(A[1, L])
...

. . .
...

vec(A[K, 1]) · · · vec(A[K,L])

⎤
⎥⎦ , (21a)

Υ =

⎡
⎢⎣

vec(Υ[1, 1]) · · · vec(Υ[1, L])
...

. . .
...

vec(Υ[K, 1]) · · · vec(Υ[K,L])

⎤
⎥⎦ , (21b)

Φ =

⎡
⎢⎣

vec(Φ[1, 1]) · · · vec(Φ[1, L])
...

. . .
...

vec(Φ[K, 1]) · · · vec(Φ[K,L])

⎤
⎥⎦ , (21c)

Θ =

⎡
⎢⎣

vec(Θ[1, 1]) · · · vec(Θ[1, L])
...

. . .
...

vec(Θ[K, 1]) · · · vec(Θ[K,L])

⎤
⎥⎦ , (21d)

with A[k, l] ∈ C
Nr×Nt , Υ[k, l] ∈ R

Nr×Nt , Φ[k, l] ∈ R
Nr×Nt

and Θ[k, l]∈R
Nr×Nt given by

A[k, l] =

⎡
⎢⎣
a1,1[k, l] · · · a1,Nt [k, l]

...
. . .

...
aNr,1[k, l] · · · aNr,Nt [k, l]

⎤
⎥⎦ , (22a)

Υ[k, l] =

⎡
⎢⎣
υ1,1[k, l] · · · υ1,Nt [k, l]

...
. . .

...
υNr,1[k, l] · · · υNr,Nt [k, l]

⎤
⎥⎦ , (22b)

Φ[k, l] =

⎡
⎢⎣
φ1,1[k, l] · · · φ1,Nt [k, l]

...
. . .

...
φNr,1[k, l] · · · φNr,Nt [k, l]

⎤
⎥⎦ , (22c)

Θ[k, l] =

⎡
⎢⎣
θ1,1[k, l] · · · θ1,Nt [k, l]

...
. . .

...
θNr,1[k, l] · · · θNr,Nt [k, l]

⎤
⎥⎦ . (22d)

V. UNCORRELATED NOISE AND SIGNAL

Assume that the additive noise at the receiver is independent
of each other, strict-sense such that the noise covariance is
independent of the time lag and has an identical variance σ2

n,
and independent of the frequency. Then, the noise covariance
becomes Rnn(τ) = En(t){n(t)nH(t− τ)} = σ2

nIδ(τ). Using
the Fouriér transform of the impulse function F{δ(τ)} = 1,
the noise power spectrum becomes Σnn(f) = σ2

nI. Substi-
tuting Σnn(f) = σ2

nI into (3) and (2), we obtain a similar
expression to [11, eq. (79)]. Usually, the transmitted signal
that maximizes the mutual information is the uncorrelated
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Gaussian signal. If the signal variance is identically σ2
x, we

obtain Rxx(τ) = Ex(t){x(t)xH(t − τ)} = σ2
xIδ(τ). Then, it

follows Σxx(f) = σ2
xI. We can see that HL̃(f) in Theorem 1

is equivalent to

HK,L(f) =
L∑

l=0

K∑
k=0

e−j2πf(T [l]+τ [k,l])B[k, l], (23)

where B[k, l]∈C
Nr×Nt is given by B[k, l] = A[k, l]�ejΥ[k,l].

Substituting Σnn(f) = σ2
nI and Σxx(f) = σ2

xI into (2), we
obtain

C =
1

ln(2)

∫ 1
2 W

− 1
2 W

ln
(|I(Ň) + M(η, f)|)df, (24)

where M(η, f)∈C
Ň×Ň is given by

M(η, f) =

⎧⎨
⎩

σ2
x

σ2
n
HK,L(f)HH

K,L(f), Nr ≤ Nt,
σ2
x

σ2
n
HH

K,L(f)HK,L(f), Nr > Nt.
(25)

VI. INEQUALITIES

A. Jensen Upper Bound

The natural logarithm of the determinant of a positive
definite matrix is concave (see e.g. [12, pp. 466-467] and [13,
Sec. 17.9.1] for a nonnegative definite symmetric matrix). The
ergodic capacity can be upper bounded by

C̄ ≤ B̄Jensen =
1

ln(2)

∫ 1
2 W

− 1
2 W

ln (|I + Eη {M(η, f)} |) df,

(26)

where the inequality is derived from the Jensen’s inequality
of the real-valued concave function ln(| · |).
B. Determinant Upper Bounds

We explore a simple inequality ln(|M|) ≤ tr(M) − Ň ,
which is a property of the determinant (see e.g. [14, p. 55]).
We can then write

C̄ ≤ B̄det =
1

ln(2)

∫ 1
2 W

− 1
2 W

tr (Eη {M(η, f)}) df. (27)

If the matrix M(η, f) can be expressed as M(η, f) =
σ2
x

σ2
n
M̆(η, f), where σ2

x
σ2
n

is the signal-to-noise ratio (SNR),

the determinant |I + σ2
x

σ2
n
M̆(η, f)| can be expanded into

|I + σ2
x

σ2
n
M̆(η, f)| = 1 + σ2

x
σ2
n
tr
(
M̆(η, f)

)
+O

((
σ2
x

σ2
n

)2
)

[15,

p. 312]. It means that there exists a constant c1 such that∣∣∣|I + σ2
x

σ2
n
M̆(η, f)| −

(
1 + σ2

x
σ2
n
tr
(
M̆(η, f)

))∣∣∣ ≤ c1

(
σ2
x

σ2
n

)2

. If
the asymptotic expansion is approximated, the approximation
error will be small when the SNR σ2

x
σ2
n

is low. The ergodic
capacity in (4) can be approximated by

C̄ � C̃ =
1

ln(2)

∫ 1
2 W

− 1
2 W

Eη {ln (1 + tr (M(η, f)))}df

≤ B̄approdet =
1

ln(2)

∫ 1
2 W

− 1
2 W

ln (1 + Eη {tr (M(η, f))}) df,

(28)

where the inequality holds from the concavity of ln(·).

C. Trace Upper Bounds

In [11, Lem. 2], an inequality has been invoked in the

form of |M| ≤
(

1
Ň

tr(M)
)Ň

. The above inequality is a
property of the trace (see e.g. [14, p. 43]). Taking the natural
logarithm at both sides, the inequality follows ln(|M|) ≤
Ň
(
ln (tr(M)) − ln(Ň)

)
. The result herein generalizes [11]

in that we consider the integral over the whole bandwidth W .
It can be shown that

C̄ ≤ B̄tr =
1

ln(2)
Ň

∫ 1
2 W

− 1
2 W

Eη

{
ln
(

1 +
1
Ň

tr (M(η, f))
)}

df

≤B̄tr+Jensen =
1

ln(2)
Ň

∫ 1
2 W

− 1
2 W

ln
(

1 +
1
Ň

Eη {tr (M(η, f))}
)

df,

(29)

where the last inequality holds from the Jensen inequality
according to the concavity of ln(·).

VII. CHANNEL STATISTICS

A. Amplitude Correlation

Before evaluating the correlation of the amplitude, we con-
sider the dispersion matrix of the amplitude matrix Ã[k, l] =
A[k, l] − E{A[k, l]} ∈ C

Nr×Nt . From the PDPs of the LoS
in (11) and NLoS in (13), there is no correlation for the
contributions between k and ḱ as well as between l and ĺ.
Then, we have

ΣAA[k, l, ḱ, ĺ] = E
{

vec(Ã[k, l])vecH(Ã[ḱ, ĺ])
}

= δk,ḱδl,ĺE
{|a[k, l]|2|τ [k, l]} I(NrNt).

(30)

Indeed, the expectation of E
{|a[k, l]|2|τ [k, l]} should be av-

eraged over T [l], τ [k, l] and Mc. The overall expectation is
shown in (31). The uncorrelated spatial correlation results in

Eη{M(η, f)} =

⎧⎨
⎩

σ2
x

σ2
n
NtςI(Nr), Nr ≤ Nt,

σ2
x

σ2
n
NrςI(Nt), Nr > Nt,

(32)

where ς is given by

ς =
∞∑

L=1

1
L!
L̄Le−L̄

L∑
l=0

K∑
k=0

Eτ,T,Mc

{|a[k, l]|2|τ [k, l]} . (33)

It can be proved that ς in (33) is finite. The determinant in
(26) and the trace in (27), (28) and (29) can be expressed as

|I + Eη{M(η, f)}| =

⎧⎪⎨
⎪⎩
(
1 + σ2

x
σ2
n
Ntς

)Nr

, Nr ≤ Nt,(
1 + σ2

x
σ2
n
Nrς

)Nt

, Nr > Nt,
(34)

tr(Eη{M(η, f)}) =
σ2

x

σ2
n

NrNtς. (35)
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Eτ,T,Mc

{|a[k, l]|2|τ [k, l]}
=

⎧⎨
⎩

1
(1−β)λ1+βλ2+1E

{
1

γ[l]e
− 1

Γ T [l]
}

E
{

e−
1

γ[l] τ [k,l]
}

E
{

10
1
10 Mc

}
, LoS,

E
{

γ[l]+γr
γ[l](γ[l]+γr(1−χ))e

− 1
Γ T [l]

}(
E
{

e−
1

γ[l] τ [k,l]
}
− χE

{
e−( 1

γr
+ 1

γ[l] )τ [k,l]
})

E
{

10
1
10 Mc

}
, NLoS in office and industrial.

(31)

B. PDP Expectation

For γ[l] = kγT [l] + γ0 in (14), the channel models CM1
- CM7 and CM9 (outdoor LoS, outdoor NLoS, and farm
environments) provide kγ = 0 or the non-assigned value
of kγ , while the channel models CM8 and CM9 (industrial)
have kγ = 0.926 for LoS and the non-assigned value of
kγ for NLoS. For the case in which γ[l] is independent of
T [l], i.e. kγ = 0, the expectation involving γ[l] remains
a simple expression, while the case of γ[l] dependent on
T [l] causes a complicate integration. For the NLoS scenario,
there is no requirement to calculate the statistical mean of
E
{|a[k, l]|2|τ [k, l]} depending on kγ , since there is no tabu-

lated data of kγ .
1) LoS Expectation: Under the LoS condition, we have

E
{

1
γ[l]

e−
1
Γ T [l]

}
=

1

γ[l] (ΓΛ + 1)l
ΓlΛl, (36)

and for non-zero kγ ,

E
{

1
γ[l]

e−
1
Γ T [l]

}
=

1
(l − 1)!

Λl

∫ ∞

0

1
kγx+ γ0

xl−1e−( 1
Γ+Λ)xdx.

(37)

The characteristic function of two Poisson processes results in

E
{

e−
1

γ[l] τ [k,l]
}

=
(

λ1γ[l]
λ1γ[l] + 1

)k

β +
(

λ2γ[l]
λ2γ[l] + 1

)k

(1 − β),

(38)

and for non-zero kγ ,

E
{

e−
1

γ[l] τ [k,l]
}

=
1

(l − 1)!
Λl

∫ ∞

0

((
λ1(kγx+ γ0)

λ1(kγx+ γ0) + 1

)k

β

+
(

λ2(kγx+ γ0)
λ2(kγx+ γ0) + 1

)k

(1 − β)

)
xl−1e−Λxdx.

(39)

Using
∫∞
−∞ e−p2x2±qxdx = 1

p

√
πe

1
4p2 q2

(see e.g. [16, p. 337]
and [17, p. 65]), the shadowing effect can be written as

EMc

{
10

1
10 Mc

}
= e

1
200 ln2(10)σ2

c . (40)

2) NLoS Expectation: One of the expectation for the NLoS
E
{

γ[l]+γr
γ[l](γ[l]+γr(1−χ))e

− 1
Γ T [l]

}
can be expressed as

E
{

γ[l] + γr

γ[l] (γ[l] + γr(1 − χ))
e−

1
Γ T [l]

}

=
γ[l] + γr

γ[l] (γ[l] + γr(1 − χ)) (ΓΛ + 1)l
ΓlΛl.

(41)

Modified from (38), the expectation E
{

e−( 1
γr

+ 1
γ[l] )τ [k,l]

}
can

be explicitly written as

E
{

e−( 1
γr

+ 1
γ[l] )τ [k,l]

}
=
(

λ1γrγ[l]
λ1γrγ[l] + γr + γ[l]

)k

β

+
(

λ2γrγ[l]
λ2γrγ[l] + γr + γ[l]

)k

(1 − β).

(42)

VIII. UPPER BOUNDS

From (26) and (34), we have the Jensen bound in closed
form

B̄Jensen =

⎧⎨
⎩

1
ln(2)WNr ln

(
1 + σ2

x
σ2
n
Ntς

)
, Nr ≤ Nt,

1
ln(2)WNt ln

(
1 + σ2

x
σ2
n
Nrς

)
, Nr > Nt.

(43)

From (27) and (35), the determinant upper bound yields

B̄det =
1

ln(2)
σ2

x

σ2
n

WNrNtς. (44)

From (28) and (35), the determinant capacity using low σ2
x

σ2
n

approximation is given by

B̄approdet =
1

ln(2)
W ln

(
1 +

σ2
x

σ2
n

NrNtς

)
. (45)

From (29) and (35), the upper bound based on trace and Jensen
inequality can be written as

B̄tr+Jensen =

⎧⎨
⎩

1
ln(2)WNr ln

(
1 + σ2

x
σ2
n
Ntς

)
, Nr ≤ Nt,

1
ln(2)WNt ln

(
1 + σ2

x
σ2
n
Nrς

)
, Nr > Nt.

(46)

The upper bounds derived above can be applied to any channel
model in the IEEE 802.15.4a standard. For the uncorrelated
fading,

• the result in (32) simplifies the integration over the
frequency band into the multiplication by the bandwidth
in (43), (44), (45) and (46),

• the upper bounds are independent of the AETD, since the
uncorrelated fading suppresses the spatial correlation,

• the Jensen upper bound is similar to the trace-plus-Jensen
upper bound.

IX. NUMERICAL EXAMPLES

The infinite summation in (33) is approximated by
∞∑

L=1

(·) ≈
M∑

L=1

(·), where M is a large number. From the experiment, the

approximation is accurate, when M is larger than 10.
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Fig. 1. Channel capacity as a function of the number of the rays K with

M = 50,
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= 1 (SNR = 0 dB) and all relevant parameters according to
the CM1 (residential) for LoS scenario [8, Tbl. I].
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Fig. 2. Channel capacity as a function of the SNR
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with M = 50,
K = 100, Nr = Nt = 2 and all relevant parameters according to the CM5
and CM6 for LoS and NLoS scenarios [8, Tbl. III].

In Fig. 1, the channel capacity is shown as a function of
the number of the rays K for the multiantenna systems with
Nt =Nr =1 and Nt =Nr =4. The transmission rate abruptly
increases for approximately the first 10 rays. It can be seen that
the channel capacity is limited by a certain number of the rays.
It means that the information is conveyed by a number of the
rays. This is because the rays that last longer provide a lower
signal strength, leading to the irrelevant signal to carry the
information. In addition, it is obvious that the multiantenna,
Nt×Nr =4 × 4, increases the transmission rate.

In Fig. 2, the channel capacity is shown as a function of the
transmitted SNR σ2

x
σ2
n

for the LoS and NLoS environments in
the channel models CM5 (Outdoor LoS) and CM6 (Outdoor
NLoS), respectively. It can be seen that the NLoS provides
more channel capacity than the LoS. Even though it is derived
from the low SNR assumption, the numerical result shows
that for a wide range of the SNR the approximate determinant
upper bound is lower than the Jensen upper bound.

X. CONCLUSIONS AND FUTURE WORKS

We considered the transmission rate over the MIMO-UWB
channel based on the IEEE 802.15.4a channel model and the
AETD. For the uncorrelated fading, the upper bounds are inde-
pendent of the AETD. The upper bounds derived above can be
applied to several channel models in the IEEE 802.15.4a stan-
dard. They serve as a simple computation approach to assess
the transmission rate over the UWB communication channels.
Numerical examples illustrate that the channel capacity is
limited by a certain number of the rays and the NLoS provides
a benefit to the channel capacity. In future work, the capacity
of the IEEE 802.15.4a multiantenna channel considering the
AETD for correlated fading remains a challenging problem.
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Literature Review (I)

◮ The cluster of the rays is the attribute of the radio
propagation [Saleh and Valenzuela 1987]1.

◮ The extension of Saleh and Valenzuela’s cluster model to the
directional channel impulse response (see, e.g., [Spencer et al.
2000, eq. (6)]2 at 7 GHz and [Wallace and Jensen 2002, eq.
(15)]3 at 2.4 GHz).

1
[Saleh and Valenzuela 1987] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath

propagation,” IEEE J. Select. Areas Commun., vol. 5, no. 2, pp. 128-137, Feb. 1987.
2
[Spencer et al. 2000] Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst, “Modeling the

statistical time and angle of arrival characteristics of an indoor multipath channel,” IEEE J. Select. Areas
Commun., vol. 18, no. 3, pp. 347-360, May 2000.

3
[Wallace and Jensen 2002] J. W. Wallace and M. A. Jensen, “Modeling the indoor MIMO wireless channel,”

IEEE Trans. Antennas Propagat., vol. 50, no. 5, pp. 591-599, May 2002.
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Literature Review (II)

◮ The propagation across different antenna elements is
considered in [Hong et al. 2008]4.

◮ In [Hong et al. 2008], there is no modeling for the cluster of
the rays.

4
[Hong et al. 2008] X. Hong, C.-X.Wang, J. Thompson, B. Allen, and W. Q. Malik, “Deconstructing

space-frequency correlated ultrawideband MIMO channels,” in Proc. IEEE Int. Conf. Ultra-Wideband 2008
(ICUWB 2008), vol. 1, Hanover, Germany, Sep. 2008, pp. 47-50.
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Transciever Model

◮ A point-to-point communication transceiver is composed of
◮ Nr antenna elements at the receiver, and
◮ Nt antenna elements at the transmitter.

◮ The received signal y(t)∈C
Nr×1 can be expressed as

y(t) = H(t) ∗ x(t) + n(t), (1)

where ∗ is the convolution,
◮ x(t)∈CNt×1 is the transmitted signal,
◮ H(t)∈CNr×Nt is the MIMO channel, and
◮ n(t)∈CNr×1 is the additive noise.

16.40-17.00, F11: MIMO 2, IEEE Int. Conf. Ultra-Wideband (ICUWB), Vancouver, Canada, Sep. 11, 2009.
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Channel Capacity (I)

Theorem (frequency-selective MIMO channel capacity)

Given a frequency-selective channel H(t) with L̃ multipath
components, the channel capacity can be expressed as
[Brandenburg and Wyner 1974]5

C = max
Σxx(f)

∫ 1
2
W

−
1
2
W

log
(

|I(Ň) +M(f)|
)

df, (2)

where

◮ Σxx(f) is the power spectral density (PSD) matrix of the
transmitted signal, ...

5
[Brandenburg and Wyner 1974] L. H. Brandenburg and A. D. Wyner, “Capacity of the Gaussian channel

with memory: The multivariate case,” Bell Syst. Tech. J., vol. 53, no, 5, May/June 1974.
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Channel Capacity (II)
Theorem (frequency-selective MIMO channel capacity
(continued))

◮ W is the signal bandwidth,

◮ Ň = min(Nt, Nr) is the minimum number of the transmitter
and receiver antennas, and

◮ M(f)∈C
Ň×Ň is the matrix given by

M(f) =

{

Σ−1
nn (f)HL̃(f)Σxx(f)H

H
L̃
(f), Nr ≤ Nt,

Σxx(f)H
H
L̃
(f)Σ−1

nn (f)HL̃(f), Nr > Nt,
(3)

with
◮ HL̃(f) being the Fourier transform of the channel, and
◮ Σnn(f) being the PSD of the stationary Gaussian noise.

16.40-17.00, F11: MIMO 2, IEEE Int. Conf. Ultra-Wideband (ICUWB), Vancouver, Canada, Sep. 11, 2009.
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Ergodic Channel Capacity

◮ Assume that there exist Ñ random parameters, which are
collected in η∈R

Ñ×1, residing in M(f).

◮ When each element of η is an ergodic process, the ergodic
capacity is written as

C̄ =
1

ln(2)

∫ 1
2
W

−
1
2
W

Eη

{

max
Σxx(f)

ln (|I+M(η, f)|)

}

df. (4)

16.40-17.00, F11: MIMO 2, IEEE Int. Conf. Ultra-Wideband (ICUWB), Vancouver, Canada, Sep. 11, 2009.
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IEEE 802.15.4a Channel Model (I)

The impulse response of the IEEE 802.15.4a channel can be
expressed as (see, e.g., [Molisch et al. 2004]6, [Molisch 2005]7, and
[Molisch et al. 2006]8)

h(t) =

L
∑

l=0

K
∑

k=0

a[k, l]ejυ[k,l]δ(t− T [l]− τ [k, l]), (5)

6
[Molisch et al. 2004] A. F. Molisch, K. Balakrishnan, C.-C. Chong, S. Emami, A. Fort, J. Karedal, J.

Kunisch, H. Schantz, U. Schuster, and K. Siwiak, “IEEE 802.15.4a channel model - final report,” Institute of
Electrical and Electronics Engineers, Inc., Tech. Rep. IEEE 802.15-04-0662-02-004a, Nov. 2004. [Online].
Available: http://grouper.ieee.org/groups/802/15/pub/04/15-04-0662-02-004a-channel-model-final-report-r1.pdf

7
[Molisch 2005] A. F. Molisch, “Ultrawideband propagation channels-theory, measurement, and modeling,”

IEEE Trans. Veh. Technol., vol. 54, no. 5, pp. 1528-1545, Sept. 2005.
8
[Molisch et al. 2006] A. F. Molisch, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J.

Kunisch, H. G. Schantz, K. Siwiak, and M. Z. Win, “A comprehensive standardized model for ultrawideband
propagation channels,” IEEE Trans. Antennas Propagat., vol. 54, no. 11, pp. 3151-3166, Nov. 2006.
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IEEE 802.15.4a Channel Model (II)

where

◮ L+ 1 is the number of clusters, K + 1 is the number of
multipath rays assumed to be equal in each cluster,

◮ a[k, l] is the tap weight of the k-th component in the l-th
cluster,

◮ υ[k, l] is the corresponding phase shift, and

◮ τ [k, l] is the delay of the k-th multipath component relative to
the l-th cluster arrival time T [l].

16.40-17.00, F11: MIMO 2, IEEE Int. Conf. Ultra-Wideband (ICUWB), Vancouver, Canada, Sep. 11, 2009.
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Antenna Element Propagation Delay
◮ For the k-th cluster and the l-th path,

◮ the angle of departure induces the propagation delay
1

c
(nt− 1)d sin(θ[k, l]) at the nt-th transmitter antenna, and

◮ the angle of arrival induces the propagation delay
1

c
(nr− 1)d sin(φ[k, l]) at the nr-th receiver antenna.

◮ To capture the time delay across antenna elements at both
sides, the impulse response can be written as

hk,lnr,nt
(t) = δ(t− ψnr,nt [k, l]), (6)

where
◮ the propagation delay ψnr,nt

[k, l] is given by

ψnr,nt
[k, l] =

1

c
d ((nt − 1) sin(θ[k, l]) + (nr − 1) sin(φ[k, l])) .

(7)

16.40-17.00, F11: MIMO 2, IEEE Int. Conf. Ultra-Wideband (ICUWB), Vancouver, Canada, Sep. 11, 2009.
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Effective Channel Model

The effective channel impulse response can be shown as

hnr,nt(t) = h(t) ∗ hk,lnr,nt
(t)

=

L
∑

l=0

K
∑

k=0

αnr,nt [k, l]δ(t − T [l]− τ [k, l]− ψnr,nt [k, l]),

(8)

where

◮ αnr,nt [k, l] is the antenna-dependent complex amplitude given
by

αnr,nt [k, l] = anr,nt [k, l]e
jυnr,nt [k,l]. (9)
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Jensen Upper Bound

The ergodic capacity can be upper bounded by

C̄ ≤ B̄Jensen =
1

ln(2)

∫ 1
2
W

−
1
2
W

ln (|I+ Eη {M(η, f)} |) df, (10)

where the inequality is derived from the Jensen’s inequality of the
real-valued concave function9 ln(| · |).

9
Concavity of a continuous function f(·) satisfies 1

2
(f(x) + f(y)) ≤ f

(

1

2
(x + y)

)

.
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Determinant Upper Bounds (I)

◮ An inequality of the determinant reads as (see, e.g.,
[Lütkepohl 1996, p. 55]10)

ln(|M|) ≤ tr(M)− Ň . (11)

◮ We can write

C̄ ≤ B̄det =
1

ln(2)

∫ 1
2
W

−
1
2
W

tr (Eη {M(η, f)}) df. (12)

10
[Lütkepohl 1996] H. Lütkepohl, Handbook of Matrices. West Sussex, England: John Wiley & Sons, 1996.
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Determinant Upper Bounds (II)
◮ We can expand (see, e.g., [Seber 2008, p. 312]11)

|I+
σ2x
σ2n

M̆(η, f)| = 1+
σ2x
σ2n

tr
(

M̆(η, f)
)

+O

(

(

σ2x
σ2n

)2
)

. (13)

◮ The ergodic capacity can be approximated by

C̄ ≃ C̃ =
1

ln(2)

∫ 1
2
W

−
1
2
W

Eη {ln (1 + tr (M(η, f)))} df

≤ C̃approdet =
1

ln(2)

∫ 1
2
W

−
1
2
W

ln (1 + Eη {tr (M(η, f))}) df,

(14)

where the inequality holds from the concavity of ln(·).

11
[Seber 2008] G. A. F. Seber, A Matrix Handbook for Statisticians. Hoboken, NJ: John Wiley & Sons, 2008.
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Trace Upper Bounds

Using ln(|M|) ≤ Ň
(

ln (tr(M)) − ln(Ň)
)

(see, e.g., [Lütkepohl
1996, p. 43]), the capacity is upper bounded by

C̄ ≤ B̄tr =
Ň

ln(2)

∫ 1
2
W

−
1
2
W

Eη

{

ln

(

1 +
1

Ň
tr (M(η, f))

)}

df

≤ B̄tr+Jensen =
Ň

ln(2)

∫ 1
2
W

−
1
2
W

ln

(

1 +
1

Ň
Eη {tr (M(η, f))}

)

df,

(15)

where the last inequality holds from the Jensen inequality
according to the concavity of ln(·).
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Amplitude Correlation

◮ From the power delay profiles (PDPs) of the line of sight and
non-line of sight, there is no correlation for the contributions
between k and ḱ as well as between l and ĺ.

◮ Then, we have

ΣAA[k, l, ḱ, ĺ] = E
{

vec(Ã[k, l])vecT(Ã[ḱ, ĺ])
}

= δ
k,ḱ
δ
l,ĺ
E
{

|a[k, l]|2|τ [k, l]
}

I(NrNt),
(16)

where E
{

|a[k, l]|2|τ [k, l]
}

is the PDP depending on each
channel model.
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Closed Forms of the Upper Bounds
We have the following closed forms of the upper bounds

B̄Jensen =







1
ln(2)WNr ln

(

1 + σ2
x

σ2
n
Ntς

)

, Nr ≤ Nt,

1
ln(2)WNt ln

(

1 + σ2
x

σ2
n
Nrς

)

, Nr > Nt,
(17)

B̄det =
1

ln(2)

σ2x
σ2n
WNrNtς, (18)

C̃approdet =
1

ln(2)
W ln

(

1 +
σ2x
σ2n
NrNtς

)

, (19)

where ς is given by

ς =
∞
∑

L=1

1

L!
L̄Le−L̄

L
∑

l=0

K
∑

k=0

Eτ,T,Mc

{

|a[k, l]|2|τ [k, l]
}

. (20)
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The Number of Sums

The number of summations for the infinite-sum approximation M
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The Number of Rays

The number of rays K
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Signal-to-Noise Ratio

Signal-to-noise ratio (dB)
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Conclusions and Future Works

◮ We considered the transmission rate over the MIMO-UWB
channel based on the IEEE 802.15.4a channel model and the
AETD.

◮ For the uncorrelated fading, the upper bounds are
independent of the AETD.

◮ The channel capacity is limited by a certain number of the
rays.

◮ The NLoS provides a benefit to the channel capacity.

◮ Correlated fading remains a challenging problem.
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