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Abstract—Spatial frequency approximation (SFA) of spatial
fading correlation (SFC) is addressed for the case that the exact
infinite summation of Bessel functions is inconvenient or infea-
sible. The angular spread is derived for semicircular scattering,
especially characterized by uniform, Gaussian, Laplacian, and
von Mises distributions. The semicircular scattering on the range
(− 1

2
π, 1

2
π] happens, e.g., when the antenna is placed on the wall.

In the usual SFA of the SFC, a characteristic function is involved
with the infinite integration range due to a small angular spread
and a near broadside nominal angle. In this paper, we propose a
new SFA of the SFC with a finite integration range. Considering
the Laplacian angular distribution, numerical examples illustrate
that for a moderate angular spread, the new SFA yields higher
accuracy in computing the SFC than the conventional SFA. For
the von Mises distribution, the new SFA is able to approximate
the SFC, while the ordinary SFA provides discrete solutions,
which are unreliable to the SFC approximation.

Index Terms—local scattering, angular distribution, character-
istic function.

I. INTRODUCTION

One of the most significant effects in wireless propagation
is the local scattering around the transmitter or the receiver. In
modern wireless communication systems, e.g., ultrawideband
technology, a signal is transmitted with a large bandwidth that
renders fine time resolution. The local scattering thus causes
a large number of observable multipath components. As a
consequence, the summation of several paths leads to a con-
tinuum or diffuse of the rays [1,2]. In general, the correlation
of the impulse responses between the n-th and another ń-th
antenna elements, denoted by spatial fading correlation (SFC),
can be regarded as a link quality. The SFC plays an important
role in the wireless communications, because the performance
metrics, such as bit error probability [3]–[5], channel capacity
[6]–[8] and etc., depend on it. Therefore, the study of the
SFC brings the realistic performance analysis up. In literature,
several works are devoted to the investigation of the SFC at an
antenna array (see, e.g., [1,2,9]–[15]). In [16,17], the SFC of
a circular array is derived from uniform, cosine, and Gaussian
angular distributions. The direct computation of the SFC often
requires extensive integrations, which are difficult or infeasible
for an angular distribution whose probability density function
(pdf) is complicated. Based on the Taylor-series approximation
from a small angular spread, spatial frequency approximation
(SFA) is considered as an approach to approximate the SFC

(see, e.g., [18] and [19, eq. (2.8)]). It is indicated in [19]
that the SFA is accurate, when nominal angle, or mean angle,
is near broadside, i.e., close to the perpendicular axis of the
antenna array.

In this paper, we provide the exact and approximate ex-
pressions of the angular spread in semicircular scattering
(− 1

2π,
1
2π]. After transforming the characteristic function of

the SFA represented in spatial frequency domain into that
represented in spatial angle domain, we truncate the integration
range of the characteristic function to cover only the semicir-
cular scattering whereby a new SFA is proposed.

A number of notations are invoked as follows. Eφ {·}
is the expectation with respect to φ whose pdf is pφ(φ).
J0(x) and Jk(x) are the zeroth order and the k-th order
Bessel functions of the first kind, respectively. I0(x) and
Ik(x) are the zeroth order and the k-th order modified Bessel
function of the first kind, respectively. The cumulative density
function of the standard Gaussian random variable is defined
as Φ(u) = 1√

2π

∫ u

−∞ e−
1
2 v2

dv. The error function erf(z) is

defined as erf(z) = 1√
π
2
∫ z

0
e−u2

du. δ(·) is the impulse

symbol defined as δ(x) = 0; x �= 0, and
∫∞
−∞ δ(x)dx = 1.

The rest of this paper is organized as follows. In Sec. II,
the SFC caused by the local scattering is discussed. For the
semicircular scattering, we consider in Sec. III several angular
distributions, angular spread, SFA, characteristic function, and
truncated characteristic function of the angular distributions.
In Sec. IV, numerical simulation is performed to illustrate
the characteristic of the SFA with the finite integration range.
Finally, the results of this paper are summarized in Sec. V.

II. SPATIAL FADING CORRELATION

In a dense object scenario, the local scattering can exist
in the vicinity of the transmitter and the receiver [20]. For a
uniform linear array, the time delay at the n-th antenna element
is given by

ψn =
1
c
d(n− 1) sin(φ), (1)

where c is the speed of electromagnetic wave, d is the distance
between adjacent antenna elements, and φ is the direction of
emitting or incoming ray measured from the perpendicular
axis of the array. The received signal is composed of a large
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number of propagating waves along various directions, which
can be characterized by an angular distribution. The correlation
between the phase of the received signals at the n-th antenna
element and that at the ń-th antenna element can be written
as [21]

ρn,ń = Eφ

{
e

1
c j2πf0d(n−ń) sin(φ)

}
, (2)

where f0 is the central frequency.

III. SEMICIRCULAR SCATTERING

In the semicircular scattering, the azimuth angle lies on φ∈
(− 1

2π,
1
2π]. This scenario happens, e.g., when the antenna is

placed on the wall. In order to evaluate the SFC in (2), we
need to consider

∫ 1
2 π

− 1
2 π
pφ(φ)e

1
c j2πf0d(nr−ńr) sin(φ)dφ, where

pφ(φ) is the spatial pdf of a certain angular distribution.

A. Angular Distributions

In previous works, some angular distributions have been
considered by exploring the geometry [22] or by directly
inferring from several statistical distributions, e.g., cosine dis-
tribution [1,23], uniform distribution [9], Gaussian distribution
[2,18], Laplacian distribution [24,25], von Mises distribution
[26], and etc. To investigate the SFC from an angular profile
point of view, let us split the azimuth angle φ into

φ = φ̄+ δφ, (3)

where φ̄ is the nominal angle and δφ is its deviation. As φ is
a random variable, the deviation angle δφ remains a random
variable. For the cosine, uniform, Gaussian, Laplacian, and
von Mises distributions, the pdf can be written respectively as

pδφ
(δφ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
π cc cosn(δφ),

δφ∈(− 1
2π − φ̄, 1

2π − φ̄],
n∈{2, 4, 6, . . .};

1
2
√

3σ̆φ
, δφ∈(−√3σ̆φ,

√
3σ̆φ];

1√
2πσ̆φ

cGe
− 1

2σ̆2
φ

δ2
φ

, δφ∈(− 1
2π − φ̄, 1

2π − φ̄];

1√
2σ̆φ

cLe
− 1

σ̆φ

√
2|δφ|

, δφ∈(− 1
2π − φ̄, 1

2π − φ̄];

1
2πI0(κ)cvMeκ cos(δφ),

δφ∈(− 1
2π − φ̄, 1

2π − φ̄],
κ ≥ 0;

(4)

where σ̆φ is the standard deviation of the underlying standard
distribution, and the normalization constants cc, cG, cL, and
cvM are given by

cc =
1(
n
1
2 n

)2n−1, (5a)

cG =
1

Φ
(

1
σ̆φ

(
1
2π − φ̄

))− Φ
(
− 1

σ̆φ

(
1
2π + φ̄

)) , (5b)

cL =
1

1− e
− 1√

2σ̆φ
π

cosh
(

1
σ̆φ

√
2φ̄
) , (5c)

cvM =
1

1
2 − 1

πI0(κ)2
∞∑

k=1

1
2k−1 (−1)kI2k−1(κ) cos

(
(2k − 1)φ̄

) .

(5d)

B. Angular Spread

An important parameter in describing a scattering channel
is a statistical value of the deviation of the arrival or departure
angles from their nominal angles. From a statistical viewpoint,
the angular deviation can be described by its standard devia-
tion, which is denoted herein by the angular spread and can
be defined as

σφ =
√

Eφ

{
(φ− φ̄)2

}
=
√

Eδφ
{δ2φ}. (6)

In [27], the angular spread is estimated using the measurement
results at 5.2 GHz and found to be 2 to 9 degrees for the
departure and 2 to 7 degrees for the arrival. For the cosine
distribution, we have from [28, p. 128]

σφ =

√√√√√√√√√

1
π2n−1 cc

n∑
k=0

1
n−2k (−1)n−2k

(
n
k

)
(

1
n−2k2φ̄ sin

(
(n− 2k)φ̄

)
+
(

1
(n−2k)2 2− (φ̄2 + 1

4π
2
))

cos
(
(n− 2k)φ̄

))
.

(7)

Regarding the uniform distribution, we have σφ = σ̆φ. For the
Gaussian distribution, the integration by parts

∫
x2e−ax2

dx =
− 1

2axe
−ax2

+ 1
4a

√
π
a erf(

√
ax) (see, e.g., [29, p. 108]) results

in

σφ =

√√√√√σ̆2
φ −

1√
2π
cGσ̆φ

⎛
⎝
(

1
2π + φ̄

)
e
− 1

2σ̆2
φ
( 1

2 π+φ̄)2

+
(

1
2π − φ̄

)
e
− 1

2σ̆2
φ
( 1

2 π−φ̄)2

⎞
⎠

≈ σ̆φ.
(8)

By considering the Laplacian distribution, we have from [29,
p. 106]

σφ =
√
cL

√√√√√ σ̆2
φ + e

− 1√
2σ̆φ

π
((
πφ̄+

√
2σ̆φφ̄

)
sinh

(
1

σ̆φ

√
2φ̄
)

−
(

1
4π

2 + φ̄2 + 1√
2
πσ̆φ + σ̆2

φ

)
cosh

(
1

σ̆φ

√
2φ̄
))

≈ σ̆φ.
(9)

For the von Mises distribution, the angular spread can be
computed from (see, e.g., [28, p. 333] and [29, Sec. 2.633])

σφ =
√
cvM

√√√√√√√√√√√√√√√√√√√

1
24π

2 + 1
2 φ̄

2 + 1
I0(κ)2

(
∞∑

k2=1

1
2k2

(−1)k2I2k2(κ)(
φ̄ sin

(
2k2φ̄

)
+ 1

2k2
cos
(
2k2φ̄

))

− 1
π

∞∑
k1=1

1
2k1−1 (−1)k1I2k1−1(κ)((

1
4π

2 + φ̄2 − 1
(2k1−1)2 2

)
cos
(
(2k1 − 1)φ̄

)

− 1
2k1−12φ̄ sin

(
(2k1 − 1)φ̄

)))
.

(10)
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In what follows, we shall neglect the cosine distribution,
since no report ascertains that it conforms with the measure-
ment results.

C. Spatial Frequency Approximation

Using the expansions of trigonometry functions (see, e.g.,
[30, Sec. 9.1.42-43] and [31, p. 22]), the SFC in (2) can be
expressed as (see, e.g., [19, eq. (2.5)])

ρn,ń = J0

(
1
c
2πf0d(n− ń)

)

+ 2
∞∑

k=1

J2k

(
1
c
2πf0d(n− ń)

)
ck

+ jJ2k−1

(
1
c
2πf0d(n− ń)

)
sk,

(11)

where ck and sk are the real and complex sinusoidal coeffi-
cients given by

ck =
∫ π

−π

pφ(φ) cos(2kφ)dφ, (12a)

sk =
∫ π

−π

pφ(φ) sin((2k − 1)φ)dφ. (12b)

To evaluate the SFC in (11), the calculation incurs the inte-
grations in (12) and the infinite number of summation terms
in (11). Next we consider the SFA, an approximation of the
SFC based on the first-order Taylor series expansion.

Lemma 1: (Approximate SFC for Small Angular Spread
and Near Broadside Nominal Angle) For a small value of the
angular spread or σφ → 0 and a near broadside nominal angle
or |φ̄| � 1

2π, the SFC between the n-th and the ń-th antenna
elements can be approximated as

ρn,ń ≈ ϕ 1
σω

δω
((n− ń)σω) ej(n−ń)ω̄, (13)

where ω̄, δω, and σω are given by

ω̄ =
1
c
2πf0d sin(φ̄), (14a)

δω =
1
c
2πf0d cos(φ̄)δφ, (14b)

σω =
1
c
2πf0d cos(φ̄)σφ, (14c)

and ϕ 1
σω

δω
(·) is the characteristic function of the pdf

p 1
σω

δω
(v|0; 1) with zero mean and unit variance of the nor-

malized random variable 1
σω
δω , given by

ϕ 1
σω

δω
(u) =

1
σφ

∫ ∞

−∞
p 1

σω
δω

(v|0; 1) ejuvdv. (15)

Proof: The derivation of (13) is given in Appendix A.
Since φ, δφ, φ̄, and σφ are the fundamental quantities from

physical angle aspect, the transformed variables ω, δω , ω̄, and
σω in (14) constitute spatial frequency domain. As adopting
the first-order Taylor series approximation in (24) and the
infinite range approximation in (30), the SFC from (13) is
called the approximate SFC based on the SFA.

Remark 1: Some notices are summarized as follows.

• The result of (13) is the similar to those in [18] and
[19, eq. (2.8)], but different from such works in that the
works in [18] and [19, eq. (2.8)] directly approximate
(26) as pδω

(δω|0;σ2
ω) ≈ pδφ

(δφ|0;σ2
φ). In our derivation,

the change of variable was invoked.
• The SFA in Lemma 1 provides a simple form for further

performance analysis. The application of the SFA can be
found in e.g. [32].

• However, it is shown in [19, Sec. 2.3] that the error
of the SFA increases with the increase in the nominal
angle φ̄ and the angular spread σφ. The cause of the
approximation error is that the absolute value of the
nominal angle |φ̄| should be much less than 1

2π so that
the approximation of the integration limits in (30) holds
quite well.

D. Characteristic Function

We transform the characteristic function in (13) into

ϕ 1
σω

δω
(σω(n− ń))

=
1
σφ

∫ ∞

−∞
p 1

σω
δω

(v|0; 1) ej(n−ń)σωvdv

=
∫ ∞

−∞
pδφ

(δφ|0;σ2
φ)e

1
c j2πf0d(n−ń) cos(φ̄)δφdδφ

=
∫ ∞

−∞
pδφ

(δφ|0;σ2
φ)e

1
cσφ

j(n−ń)2πf0d cos(φ̄)σφδφdδφ

=
∫ ∞

−∞
pδφ

(δφ|0;σ2
φ)e

1
σφ

jσω(n−ń)δφdδφ.

(16)

The characteristic function in (13) will be evaluated for each
distribution according to (16) for δφ on the ideal range
(−∞,∞).

1) Uniform Distribution: Since δφ for the uniform distri-
bution is on the finite range (−√3σ̆φ,

√
3σ̆φ], the integration

equivalent to (16) remains

ϕ 1
σω

δω
(u) =

1
2
√

3σ̆φ

∫ √
3σ̆φ

−√
3σ̆φ

e
1

σφ
juδφdδφ

=
1√
3u

sin
(√

3u
)
.

(17)

2) Gaussian Distribution: From [33, p. 65], we have

ϕ 1
σω

δω
(u) =

1√
2πσ̆φ

cG

∫ ∞

−∞
e
−
(

1
2σ̆2

φ

δ2
φ− 1

σφ
juδφ

)
dδφ

= cGe
− 1

2

σ̆2
φ

σ2
φ

u2

.

(18)

3) Laplacian Distribution: One can show that

ϕ 1
σω

δω
(u) =

1√
2σ̆φ

cL

∫ ∞

−∞
e
− 1

σ̆φ

√
2|δφ|+ 1

σφ
juδφdδφ

=
1

1
2

σ̆2
φ

σ2
φ
u2 + 1

cL.
(19)
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4) Von Mises Distribution: It can be shown that

ϕ 1
σω

δω
(u) =

1
2πI0(κ)

cvM

∫ ∞

−∞
eκ cos(δφ)e

1
σφ

juδφdδφ

= cvM

(
σφδ (u) +

1
I0(κ)

∞∑
k=1

Ik(κ)
(
δ

(
k +

1
σφ
u

)
+ δ

(
k − 1

σφ
u

)))
.

(20)

E. Truncated Characteristic Function

Other than the ordinary characteristic function in (16), we
shall restrict the integration limits of δφ in (16) to be finite on
the semicircular range (− 1

2π − φ̄, 1
2π − φ̄].

1) Gaussian Distribution: When δφ is on the semicircular
range (− 1

2π−φ̄, 1
2π−φ̄], the integration in (16) can be derived

from (see, e.g., [28, p. 109] and [29, p. 108])

ϕ̌ 1
σω

δω
(u) =

1√
2πσ̆φ

cG

∫ 1
2 π−φ̄

− 1
2 π−φ̄

e
− 1

2σ̆2
φ

δ2
φ+ 1

σφ
juδφ

dδφ

=
1
2
cGe

− 1
2

σ̆2
φ

σ2
φ

u2
(

erf

(
1

2σ̆2
φ

(
1
2
π + φ̄

)
+

1
2
√

2

σ̆2
φ

σ2
φ

u2

)

+erf

(
1

2σ̆2
φ

(
1
2
π − φ̄

)
− 1

2
√

2

σ̆2
φ

σ2
φ

u2

))
.

(21)

Note that if the lower limit − 1
2π − φ̄ in (21) is replaced

by the negative infinity, we have limx→−∞ erf(x) = −1. If
the upper limit 1

2π − φ̄ in (21) is replaced by the positive
infinity, we have limx→∞ erf(x) = 1. Therefore, it results in
limx→∞ 1

2 (erf(x)− erf(−x)) = 1 from which ϕ̌ 1
σω

δω
(u) in

(21) is equal to ϕ 1
σω

δω
(u) in (18).

2) Laplacian Distribution: When δφ is on the semicircular
range (− 1

2π− φ̄, 1
2π− φ̄], the integration in (16) can be shown

in (22).
3) Von Mises Distribution: For the semicircular interval

(− 1
2π − φ̄, 1

2π − φ̄], the finite integration range reads as

ϕ̌ 1
σω

δω
(u) =

1
2πI0(κ)

cvM

∫ 1
2 π−φ̄

− 1
2 π−φ̄

eκ cos(δφ)e
1

σφ
juδφdδφ

=
1
π
cvMe

− 1
σφ

juφ̄

(
1
u
σφ sin

(
1

2σφ
uπ

)
+

1
I0(κ)

2

cos
(

1
2σφ

uπ

) ∞∑
k=1

1
1

σ2
φ
u2 − (2k − 1)2

(−1)kI2k−1(κ)

(
(2k − 1) cos((2k − 1)φ̄) +

1
σφ

ju sin((2k − 1)φ̄)
))

.

(23)

IV. NUMERICAL EXAMPLES

We mainly consider the angular distributions, which are
sound to the measurement results, such as the Laplacian
distribution [24,25] and the von Mises distribution [26].

Angular Spread σφ [degree]

Sp
at

ia
l

Fa
di

ng
C

or
re

la
tio

n
ρ

n
,ń

Simulation
SFA: Infinite
SFA: Finite

15.12 15.14 15.16
0 2 4 6 8 10 12 14 16 18 20

0.0475
0.0476
0.0477
0.0478
0.0479

10−2

10−1

100

Fig. 1. The spatial fading correlation ρn,n−1 as a function of the angular
spread σφ for the Laplacian distribution with φ̄ = 40◦, Nφ = 106,
f0 = 1

2
(10.6 + 3.1) GHz, and d = 0.2 m. “Simulation” is calcu-

lated from
∣∣ 1

Nφ

Nφ∑
m=1

e
1
c
j2πf0d sin(φ̄+δφm )

∣∣. “SFA: Infinite” is computed

from
∣∣ 1

1
2

σ̆2
φ

σ2
φ

σ2
ω+1

ejω̄
∣∣. “SFA: Finite” is given by

∣∣ϕ̌ 1
σω

δω
(σω)ejω̄

∣∣ with

ϕ̌ 1
σω

δω
(σω) derived from (22).

In Fig. 1, the SFC ρn,ń for the Laplacian angular distribution
is shown as a function of the angular spread σφ. From the
main figure, it can be seen that i) the SFC of the Laplacian
angular distribution with φ̄ = 40◦ monotonically decreases
with the increase in the angular spread, and ii) the difference
of “Simulation” from both “SFA: Infinite” and “SFA: Finite” is
noticeable for σφ > 13◦. In the corresponding zoomed figure,
there exists a difference between the “SFA: Infinite” and the
“SFA: Finite” where we can see that the proposed “SFA: Fi-
nite” is closer to the “Simulation” than the conventional “SFA:
Infinite”. The difference of the approximations results from the
integration in that unlike the infinite range of the integration in
(16), the new characteristic function ϕ̌ 1

σω
δω

(σω) was truncated

on the semicircular range, i.e., δφ ∈ (− 1
2π − φ̄, 1

2π − φ̄].
In Fig. 2, the SFC for the von Mises distribution is shown

as a function of the central frequency f0 for several distances
of antenna element separation d. We can see that the SFC
decreases in large scale with the increase in the central fre-
quency and decreases with the increase in the antenna element
separation distance. The usual SFA with the infinite integration
range does not appear in the figure, since the solution in (20)
has discrete values of its argument. Rather, the new SFA with
the finite integration range can approximate the SFC, when
the SFC is approximately larger than 0.1. In addition, the
numerical integration of the first equality in (23) is shown to
correspond to the closed form at the second equality in (23).

V. CONCLUSION

The angular spread is derived for the semicircular scattering
on the range φ∈ (− 1

2π,
1
2π] and especially with the uniform,

Gaussian, Laplacian, and von Mises distributions. This sce-
nario happens, e.g., when the antenna is placed on the wall.
The SFA of the SFC is considered when the exact infinite
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ϕ̌ 1
σω

δω
(u) =

1√
2σ̆φ

cL

∫ 1
2 π−φ̄

− 1
2 π−φ̄

e
− 1

σ̆φ

√
2|δφ|+ 1

σφ
juδφdδφ

=
1

σ̆2
φ

σ2
φ
u2 + 2

cL

(
2− e

− 1√
2σ̆φ

π
(
− 1

2
√

2
u sin

(
1

2σφ
(2φ̄+ π)u

)
e
− 1

σ̆φ

√
2φ̄

+
1

2
√

2
u sin

(
1

2σφ
(2φ̄− π)u

)
e

1
σ̆φ

√
2φ̄

+ cos
(

1
2σφ

(2φ̄+ π)u
)

e
− 1

σ̆φ

√
2φ̄

+ cos
(

1
2σφ

(2φ̄− π)u
)

e
1

σ̆φ
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Fig. 2. The spatial fading correlation ρn,n−1 as a function of the
central frequency f0 for the von Mises distribution with φ̄ = 20◦,
Nφ = 106, κ = 1, and N∞ = 100. “Simulation” is calcu-

lated by
∣∣ 1

Nφ

Nφ∑
m=1

e
1
c
j2πf0d sin(φ̄+δφm )

∣∣. “SFA: Infinite” is computed by∣∣ϕ 1
σω

δω
(σω)ejω̄

∣∣ with ϕ 1
σω

δω
(σω) derived from (20). “SFA: Finite” is

given by
∣∣ϕ̌ 1

σω
δω

(σω)ejω̄
∣∣ with ϕ̌ 1

σω
δω

(σω) derived from (23). “SFA:

Numerical Finite” is the numerical integration of the first equality in (23).

summation of Bessel functions in (11) is inconvenient or
infeasible. The conventional SFA of the SFC with the infinite
integration range is derived. We also have proposed its coun-
terpart as the SFA of the SFC with the finite integration range.
Numerical examples illustrate that for the moderate angular
spread in the Laplacian distribution, the new SFA can provide
higher accuracy in computing the SFC than the usual SFA.
For the von Mises distribution, the conventional SFA causes
the discrete values of the SFC, which cannot approximate the
actual SFC, whereas the new SFA can approximate the SFC.
The results in this work can be applied to various communities,
e.g., channel modeling, channel measurement, estimation of
spatial channel parameters, bit error performance analysis, and
transmission rate analysis.

APPENDIX A
PROOF OF LEMMA 1

For a small value of the angular spread σφ, a spatial
frequency is approximated as (see, e.g., [18], [19, Sec. 2.2.2],

and [25])

ω =
1
c
2πf0d

(
sin(φ̄) cos(δφ) + cos(φ̄) sin(δφ)

)

≈
δφ→0

1
c
2πf0d

(
sin(φ̄) + δφ cos(φ̄)

)
= ω̄ + δω.

(24)

From (14b), we can write

σ2
ω = Eδω

{
(ω − ω̄)2

}

= Eδφ

{(
1
c
2πf0dδφ cos(φ̄)

)2
}

=
(

1
c
2πf0d cos(φ̄)

)2

σ2
φ.

(25)

Using the result of (25), the change of random variable
provides

pδω
(δω|0;σ2

ω) = pδφ
(δφ|0;σ2

φ)
∣∣∣∣ d
dδω

δφ

∣∣∣∣
= pδφ

(δφ|0;σ2
φ)
∣∣∣∣ 1

1
c2πf0d cos(φ̄)

∣∣∣∣
=
σφ

σω
pδφ

(δφ|0;σ2
φ),

(26)

and

p 1
σω

δω

(
1
σω
δω|0; 1

)
= pδω

(δω|0;σ2
ω)

∣∣∣∣∣∣
d

d
(

1
σω
δω

)δω
∣∣∣∣∣∣

= σωpδω
(δω|0;σ2

ω).

(27)

For a small angular spread, we can approximate

ρn,ń =
∫ 1

2 π

− 1
2 π

pφ(φ)e
1
c j2πf0d(n−ń) sin(φ)dφ

≈
δφ→0

e
1
c j2πf0d(n−ń) sin(φ̄)

∫ 1
2 π−φ̄

− 1
2 π−φ̄

pδφ
(δφ|0;σ2

φ)

e
1
c j2πf0d(n−ń)δφ cos(φ̄)dδφ.

(28)
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It can be further shown that

ρn,ń =
σω
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ej(n−ń)ω̄
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(29)

If φ̄ is not close to − 1
2π and 1

2π, we can approximate

ρn,ń ≈ 1
σφ

ej(n−ń)ω̄
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( 1
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Introduction

I Local scattering causes multipath propagation.

I There exists a correlation between two antenna elements,
namely spatial fading correlation (SFC).

I The SFC plays an important role in wireless communications,
such as

I probability of bit error rate,
I channel capacity,
I and etc.
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Problem

I The direct computation of the SFC requires extensive
integrals.

I The SFC can be approximated by truncating the first-order
Taylor series expansion

I around the spatial frequency angle
I for a small angular spread.

I The approximation is entitled spatial frequency approximation
(SFA).
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Research Gap

I In the traditional SFA (see, e.g., [Trump and Ottersten 1996]1

and [Bengtsson 1999]2), the characteristic function is involved
with the integration with infinite range.

I In this work, we truncate the integration range of the
characteristic function to a finite range on semicircular
scattering (−1

2π,
1
2π].

1
[Trump and Ottersten 1996] T. Trump and B. Ottersten, “Estimation of nominal direction of arrival and

angular spread using an array of sensors,” Signal Process., no. 1-2, pp. 57-69, Apr. 1996.
2
[Bengtsson 1999] M. Bengtsson, “Antenna array signal processing for high rank data models, Ph.D.

dissertation, Royal Institute of Technology, Stockholm, Sweden, Dec. 1999.
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Time Delay across Antenna Elements

I For a uniform linear array, the time delay at the n-th antenna
element is given by

ψn =
1

c
d(n− 1) sin(φ), (1)

where

I c is the speed of electromagnetic wave,
I d is the distance between two adjacent antenna elements,
I φ is the direction of arrival or emitting ray measured from the

perpendicular axis of the array.
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Spatial Fading Correlation

I The correlation between the complex envelope of the signal
from the n-th antenna element and another ń-th antenna
element is given by

ρn,ń = Eφ

{
e−

1
c
j2πf0d(n−ń) sin(φ)

}
. (2)

I For the semicircular scattering (−1
2π,

1
2π], the SFC can be

calculated from

ρn,ń =

∫ 1
2
π

− 1
2
π
pφ(φ)e−

1
c
j2πf0d(n−ń) sin(φ)dφ, (3)

where pφ(φ) is the probability density function (pdf) of the
angle of arrival or departure.
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Angular Distributions

I For the cosine, uniform, Gaussian, Laplacian, and von Mises
distributions, the pdf can be written respectively as

pδφ(δφ) =



1
π cc cosn(δφ),

δφ∈(−1
2π − φ̄,

1
2π − φ̄],

n∈{2, 4, 6, . . .};
1

2
√

3σ̆φ
, δφ∈(−

√
3σ̆φ,

√
3σ̆φ];

1√
2πσ̆φ

cGe
− 1

2σ̆2
φ

δ2
φ
, δφ∈(−1

2π − φ̄,
1
2π − φ̄];

1√
2σ̆φ

cLe
− 1
σ̆φ

√
2|δφ|

, δφ∈(−1
2π − φ̄,

1
2π − φ̄];

1
2πI0(κ)cvMeκ cos(δφ),

δφ∈(−1
2π − φ̄,

1
2π − φ̄],

κ ≥ 0.

(4)
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Angular Spread

I An important parameter in describing a scattering channel is a
statistical value of the deviation of the arrival or departure
angles from their nominal angles.

I From a statistical viewpoint, the angular spread can be
described as

σφ =
√

Eφ
{

(φ− φ̄)2
}

=
√

Eδφ{δ2
φ}. (5)

I In [Czink et al. 2005]3, the angular spread is estimated using
the measurement results at 5.2 GHz and found to be 2 to 9
degrees for the departure and 2 to 7 degrees for the arrival.

3
[Czink et al. 2005] N. Czink, E. Bonek, X. Yin, and B. Fleury, “Cluster angular spreads in a MIMO indoor

propagation environment,” in Proc. IEEE Int. Symp. Personal, Indoor, Mobile Radio Commun. 2005 (PIMRC
2005), vol. 1, Berlin, Germany, Sept. 2005, pp. 664-668.
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Laplacian Distribution: Angular Spread

I For the Laplacian distribution, we have from [Gradshteyn and
Ryzhik 2007, p. 106]4

σφ =
√
cL

√√√√√ σ̆2
φ + e

− 1√
2σ̆φ

π ((
πφ̄+

√
2σ̆φφ̄

)
sinh

(
1
σ̆φ

√
2φ̄
)

−
(

1
4π

2 + φ̄2 + 1√
2
πσ̆φ + σ̆2

φ

)
cosh

(
1
σ̆φ

√
2φ̄
))

≈ σ̆φ.
(6)

4
[Gradshteyn and Ryzhik 2007] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,

7th ed. San Diego, CA: Elsevier, 2007.
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Laplacian Distribution: Numerical Example (I/III)

Standard Deviation σ̆φ [degree]
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φ̄ = 0◦: Derivation
φ̄ = 0◦: Approximation
φ̄ = 20◦: Simulation
φ̄ = 20◦: Derivation
φ̄ = 20◦: Approximation
φ̄ = 40◦: Simulation
φ̄ = 40◦: Derivation
φ̄ = 40◦: Approximation
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Figure: The angular spread σφ as a function of the standard deviation
σ̆φ. with φ̄max = 1

2π −
√

3σφ,max = 90◦ −
√

3 · 20◦ = 55.3590◦.
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Laplacian Distribution: Numerical Example (II/III)

Nominal Angle φ̄ [degree]
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σ̆φ = 0.1◦: Simulation
σ̆φ = 0.1◦: Derivation
σ̆φ = 0.1◦: Approximation
σ̆φ = 10◦:Simulation
σ̆φ = 10◦: Derivation
σ̆φ = 10◦: Approximation
σ̆φ = 20◦: Simulation
σ̆φ = 20◦: Derivation
σ̆φ = 20◦: Approximation
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Figure: The angular spread σφ as a function of the nominal angle φ̄ with
Nφ = 105 and σφ,max = 1√

3

(
1
2π − φ̄max

)
= 1√

3
(90◦ − 50◦) = 23.0940◦.
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Spatial Fading Correlation in Terms of Bessel Functions
I Using the expansions of the trigonometric functions, we can

derive

ρn,ń = J0

(
1

c
2πf0d(n− ń)

)
+ 2

∞∑
k=1

J2k

(
1

c
2πf0d(n− ń)

)
ck

+ jJ2k−1

(
1

c
2πf0d(n− ń)

)
sk,

(7)

where ck and sk are the sinusoidal coefficients given by

ck =

∫ 1
2
π

− 1
2
π
pφ(φ) cos(2kφ)dφ, (8a)

sk =

∫ 1
2
π

− 1
2
π
pφ(φ) sin((2k − 1)φ)dφ. (8b)
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Spatial Frequency Approximation
I For a small angular spread σφ → 0 and a near broadside

nominal angle |φ̄| � 1
2π, the SFC can be approximated as

ρn,ń ≈ ϕ 1
σω
δω

((n− ń)σω) ej(n−ń)ω̄, (9)

where ω̄, δω, σω, and ϕ 1
σω
δω

(·) are given by

ϕ 1
σω
δω

(u) =
1

σφ

∫ ∞
−∞

p 1
σω
δω

(v|0; 1) ejuvdv, (10a)

δω =
1

c
2πf0d cos(φ̄)δφ, (10b)

σω =
1

c
2πf0d cos(φ̄)σφ, (10c)

ω̄ =
1

c
2πf0d sin(φ̄). (10d)
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Characteristic Function
I We transform the characteristic function in (9) into

ϕ 1
σω
δω

(σω(n− ń)) =
1

σφ

∫ ∞
−∞

p 1
σω
δω

(v|0; 1) ej(n−ń)σωvdv

=

∫ ∞
−∞

pδφ(δφ|0;σ2
φ)e

1
σφ

jσω(n−ń)δφ
dδφ.

(11)

I The characteristic function with the angular truncation is
given by

ϕ̌ 1
σω
δω

(σω(n− ń)) =

∫ 1
2
π

− 1
2
π
pδφ(δφ|0;σ2

φ)e
1
σφ

jσω(n−ń)δφ
dδφ.

(12)
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Laplacian Distribution: Characteristic Function

I One can show that

ϕ 1
σω
δω

(u) =
1

1
2

σ̆2
φ

σ2
φ
u2 + 1

cL. (13)
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Laplacian Distribution: Truncated Characteristic Function

ϕ̌ 1
σω
δω

(u)

=
1

σ̆2
φ

σ2
φ
u2 + 2

cL

(
2− e

− 1√
2σ̆φ

π
(
− 1

2
√

2
u sin

(
1

2σφ
(2φ̄+ π)u

)
e−w

+
1

2
√

2
u sin

(
1

2σφ
(2φ̄− π)u

)
ew + cos

(
1

2σφ
(2φ̄+ π)u

)
e−w

+ cos

(
1

2σφ
(2φ̄− π)u

)
ew + j

(
− 1

2
√

2
u cos

(
1

2σφ
(2φ̄+ π)u

)
e−w

+
1

2
√

2
u cos

(
1

2σφ
(2φ̄− π)u

)
ew − sin

(
1

2σφ
(2φ̄+ π)u

)
e−w

− sin

(
1

2σφ
(2φ̄− π)u

)
ew
)))

, w =
1

σ̆φ

√
2φ̄.
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Laplacian Distribution: Numerical Example (III/III)

Angular Spread σφ [degree]
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Figure: The spatial fading correlation ρn,n−1 as a function of the angular
spread σφ for the Laplacian distribution with φ̄ = 40◦, Nφ = 106,
f0 = 1

2 (10.6 + 3.1) GHz, and d = 0.2 m.
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Von Mises Distribution: Characteristic Function

I It can be shown that

ϕ 1
σω
δω

(u) = cvM

(
σφδ (u) +

1

I0(κ)

∞∑
k=1

Ik(κ)

(
δ

(
k +

1

σφ
u

)
+ δ

(
k − 1

σφ
u

)))
.

(14)
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Von Mises Distribution: Truncated Characteristic Function

I For the semicircular interval (−1
2π − φ̄,

1
2π − φ̄], the finite

integration range reads as

ϕ̌ 1
σω
δω

(u) =
1

π
cvMe

− 1
σφ

juφ̄

(
1

u
σφ sin

(
1

2σφ
uπ

)
+

1

I0(κ)
2

cos

(
1

2σφ
uπ

) ∞∑
k=1

1
1
σ2
φ
u2 − (2k − 1)2

(−1)kI2k−1(κ)

(
(2k − 1) cos((2k − 1)φ̄) +

1

σφ
ju sin((2k − 1)φ̄)

))
.

(15)
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Von Mises Distribution: Numerical Example

Central Frequency f0 [Hz]
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Figure: The spatial fading correlation ρn,n−1 as a function of the central
frequency f0 for the von Mises distribution with φ̄ = 20◦, Nφ = 106,
κ = 1, and N∞ = 100.
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Conclusion

I The angular spread is derived for the semicircular scattering
on the range (−1

2π,
1
2π] for the uniform, Gaussian, Laplacian,

and von Mises distributions.

I We have proposed the counterpart of the usual SFA as the
SFA of the SFC with the finite integration range.

I For the moderate angular spread in the Laplacian distribution,
the new SFA can provide higher accuracy in computing the
SFC than the usual SFA.

I For the von Mises distribution, the conventional SFA causes
the discrete values of the SFC, which cannot approximate the
actual SFC, whereas the new SFA can approximate the SFC.
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Thank you for your attention
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