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ABSTRACT
High bandwidth demands in interactive streaming applica-
tions pose challenges in efficiently utilizing the available
bandwidth. Well known standards like MPEG-DASH and
Apple HTTP streaming use buffer control mechanisms at
the client for bandwidth estimation and segmentation at the
server, which can add latency and complexity. We present
a prototype of a real-time interactive free-viewpoint ren-
dered application, that can be applied as an alternative to the
existing buffering and segmentation-based approaches. We
employ a novel approach in passive bandwidth estimation
and implemented a weighed bit rate algorithm in JavaScript
and HTML5 that utilizes browser statistics. The video qual-
ity fluctuations at the client are signaled to the server via
WebSocket. Using open source technologies and client-side
bandwidth estimation techniques, the feasibility of the pro-
posed algorithm is demonstrated. The evaluation results
show that the prototype quickly responds to fluctuations in
the available bandwidth under varying network conditions.
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1 INTRODUCTION
Interactive streaming has come into importance with the
technologies like 3D rendering,multi-view, and free-viewpoint
video (FVV) streaming, where the user can switch the views
based on the multiple views available at the server or client-
side [17]. In the case of multi-view streaming, view syn-
thesis can be achieved by server or client-side rendering,
or with multiple camera arrays, which demand high net-
work bandwidth and CPU capacities. In our current work,
we demonstrate a FVV streaming application where the re-
quested view is rendered by the server with synthesis and
reference depth images instead of multiple cameras. The
rendered 3D model is encoded and transferred to the client
through HTTP streaming. Fluctuations in the available band-
width (ABW) due to the varying network conditions have an
effect on the video delivery, and adaptive video streaming
comes into play to cope with the varying network condi-
tions. The key phases of adaptive streaming are bandwidth
estimation, signaling to the server changes in the ABW and
transferring the video stream that matches with the client
bandwidth requirement [9]. Changes in the ABW can be
estimated using passive or active methods. We focus on the
passive method, which does not require probing additional
data [8].

ABWcan be estimated bymodeling the client buffer, which
is not ideal in the case of interactive streaming applications
due to the lower expected response times from the client. As
obtaining the lower layer statistics (packets per sec) is not yet
standardized in Javascript API, it is challenging to implement
a passive bandwidth estimation technique based on the infor-
mation available at the HTML5 client browser without any
plugins. In case of MPEG-DASH adaptive streaming method,
at least one segment is already fetched to estimate the ABW,
that leads to buffering delay of one segmented chunk [1].
Considering a delay-sensitive interactive FVV application,
reacting to the current changes in the bandwidth maybe
delayed until the completion of processing and buffering
duration of last segment, that can lead to a delay in the order
of seconds. We address this problem by passive bandwidth
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estimation without basing on the segmentation into chunks,
but instead on the open source browser statistics collected
instantaneously from the HTML5 browser. We presented a
DASH implementation using the open source Shaka-Player
with JavaScript and evaluated the delay performance and
overhead with our measurement framework.
Our contribution is twofold: (i) enabling passive band-

width estimation support for a delay-sensitive interactive
free-viewpoint application with lower response times, which
is independent of segmented or buffered approach, and (ii)
extracting the parameters being embedded into HTML5 doc-
uments, based on WHATWG version specification [3], that
are used as an input to the bandwidth estimation algorithm,
which reacts to the bandwidth fluctuations.

2 RELATEDWORK
The literature on adaptive free-viewpoint streaming is multi-
folded with focus on how to synthesize the views by reducing
the redundancy, and adapt the switching view requested by
the client. Authors in [4] discussed about the complexity
and view switching latency of choosing the views spread on
the server based on the given view position. However, the
work does not illustrate a practical implementation on how
the client can passively estimate the bandwidth and report
it to the server. Work from [2] introduces the feasibility of
using a HTML5 browser supporting the DASH segments and
suggested a number of changes to the HTML5 video tag. The
motivation from above work lead to further investigating on
browser statistics to develop a prototype for adaptive video
streaming of a FVV application.
Considering the work in client-side bandwidth estima-

tion techniques, the download time of a segment can be
used to compute a rough approximation of the ABW [6] by
monitoring the buffer length and dropped frames [13] for
an on-demand streaming application. In [11], a smoothed
HTTP/TCP bandwidth estimation on the application layer
is presented using the segment fetch time, which can be in-
accurate due to the inconsistencies in time synchronizations
between the server and the client. Findings from [12], [10]
show that the delay components of adaptive video streaming
systems comprises of segmentation on the server, fetching of
media segments, download time, client buffering, decoding,
and playback, which have an affect on the QoE of adaptive
streaming applications [15]. From the previous works, us-
ing the segmentation and buffered approach to adapt with
the current network conditions on a delay-sensitive FVV
application can lead to delay in the order of seconds for the
adaptation.

We propose a novel approach for an exclusive delay-sensitive
FVV [19] application, that makes use of the non-segmented
video delivery over HTML5without using the existing DASH
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Figure 1: Architecture of the Free-Viewpoint applica-
tion with the FFmpeg DASH encoding.

systems. We make an effort to demonstrate the feasibil-
ity of using open-source browser statistics with the help
of WHATWG, direct the trend towards non-segmented ap-
proaches, and show the applicability under varying network
conditions. The prototype is valid not only for FVV systems
but also for on-demand and live streaming on HTML5.

3 SYSTEM OVERVIEW
Thiswork demonstrates the use case of free-viewpoint stream-
ing and rendering, where the user can control the view with
different mouse positions on the browser [19]. The architec-
ture from Fig. 1 consists of the DASH client-browser, renderer
application, the DASH encoder, the streaming server, and the
web server on the server-side. The client-server interaction
including the feedback channel is shown in Fig. 2. In the fol-
lowing, system and implementation details with MP are de-
scribed.The server-side rendering application is programmed
using OpenGL libraries in C++ and can generate images up to
50 frames per second that enables thin clients using HTML5
to view the rendered images. The images created by the ap-
plication are written to a named pipe, which are read and
encoded by the FFmpeg encoder, streamed with FFserver,
and decoded by HTML5 without plugins and third-party
software [20]. Constant bit rate (1 Mbps) with HTTP/TCP
streaming has been used to avoid firewall. The client sends
an HTTP GET request to receive the HTML5 stream from
the web server, and sends the desired mouse coordinates to
the server along with the ABW changes through the web-
socket channel. The bandwidth adaptation algorithm is im-
plemented on the client-side browser (google-chrome).

3.1 DASH implementation
Webm-DASH encoding is used to enable segmentation of the
video stream to several chunks, and Shaka-Player is used as
the client to decode the webm chunks. FFmpeg runs two pro-
cesses: (i) encoding the images in real-time to webmchunks
and (ii) creating the manifest file with the chunk identifier
and the necessary time stamps. The encoded webm chunks
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Figure 2: Free-viewpoint rendering application
marked with Measurement Points (MP).
are of length equal to the Group of Pictures (GoP), and ev-
ery chunk should start with a key frame. Shaka-Player uses
JavaScript player library and loads the manifest file with the
defined chunk identifier. The chunks are received with the
HTTP GET request from the webserver and the media at-
tribute from the Shaka-Player plays the downloaded chunks.
The suggestedPresentationDelay is set to zero seconds.

3.2 Measurement Points and Delays
The latency in DASH implementation is observed and exper-
imentally verified with the logging framework from FFmpeg
source code. MP-A, MP-B (Fig. 2) denote the time-stamp af-
ter the video frame is rendered by the render software and
fetched from the pipe with FFmpeg. The chunks created at
MP-C in the webm container format are written to the tcp
socket at MP-D. MP-E is the time-stamp when the first data
segment is written to the socket. In our evaluation, we show
the delay, overhead due to the segmentation i.e., between
MP-C → MP-E. We evaluate three parameters: (i) initial
delay (IDL) (ii) overhead and (iii) delay-offset from the live
edge:
Initial delay (IDL). When the client requests for a specific
chunk, the requested chunk is encoded by FFmpeg at MP-C
and the first segment is received at MP-F. The IDL is depen-
dent on the chunk size, which corresponds to one GoP. In
our evaluation, we have shown the IDL for the first chunk.
Overhead. The interaction between Shakaplayer client re-
quests to the server encoding software (FFmpeg) influences
the delay experience and the overhead. Every time, should
the client request for a new chunk, a HTTP GET request of
388 Bytes is sent across the network to the server.
Delay-offset. By default, Shaka-Player cannot download chunks
faster than a GoP of one second. To elaborate on this, if the
frame rate is 30 fps, a GoP of less than 30 leads to a delay
offset; where the encoder (FFmpeg) is creating more chunks
than the player can actually download at that instant of time.
In the case of live or interactive streaming, this can lead to
delays in the order of seconds. An experimental verification
and analysis of the above effects is provided in Sec. 6

4 BANDWIDTH ADAPTATION
This section describes the bandwidth adaptation procedure.
It describes the way performancemetrics are being generated
and utilized in our bandwidth adaptation algorithm (BWA).

4.1 Mining Video Quality Statistics
We rely onWebkit supportedweb browser engines to retrieve
statistics on the received and decoded bytes and frames. In
particular, the client-sideWebkit engine exposes bothmetrics
over JavaScript-based interfaces namedwebkitDecodedByteCount
and webkitDecodedFrameCount , respectively. They repre-
sent the cumulative count of bytes and frames, which have
been decoded since the video started. Derivation over time
(ever t= 1s) then yields the current bit rate sample, frame
rate sample.

b =
d (webkitDecodedByteCount )

dt
(1)

f =
d (webkitDecodedFrameCount )

dt
(2)

4.2 Bit Rate Estimation
Our bit rate estimation is based on the implementation of
the Shaka-Player, but is applied to a non-segmented video
delivery. Bit rate estimation b̂ depends, besides the currently
sampled bit rate, on the history of past bit rate samples.
Considering the current (n) and the previous (n − 1) step in
bit rate estimation, we compute the current b̂(n) as follows.

b̂(n) = (1 − α ) · b(n) + α · b̂(n−1) (3)
The weight of these components can be adjusted by α . If α
decreases then the weighted bit rate converges towards the
current bit rate. Vice versa, an increasing α yields estimates
more depending on the past bit rates.

α = e
loд ( 12 )

η (4)
The additional parameter η defines the half-life of the estima-
tion. The Shaka-Player can be run in a fast-adaptive mode,
where the half-life is set to 3 seconds and a slow-adaptive
mode, with 10 seconds half-life. In our implementation, a
constant η = 3s is used.

4.3 Desired Bit Rate
We define the desired reference bit rate br as:

br =
fr
f
· b̂ (5)

The parameter fr is a constant set on the client representing
the desired frames per second (fps) for smooth video playback
with decent quality while f is the actual frame rate (Eqn.
(2)). fr is equal the ideal frame rate on the client when the
ABW is greater than the current instantaneous bit rate. In our
scenario, fr is set to 20 fps. In above equation, fr /f represents
a factor to adjust the sender’s bit rate in dependence of the



estimated bit rate at the receiver. If fr /f = 1 then the sender’s
bit rate is adequate. Otherwise, if this factor is greater than
1 then also br is greater than b̂. That means the sender’s bit
rate must be increased accordingly. The algorithm calculates
a reference bit rate value after the initial 10 seconds of video
playback using Eqn. (5). The hypothesis is that the ABW is
higher than the bit rate for the first 10 seconds, and the video
stream has a smooth playback.

4.4 Switch Cases
Case 1: High quality to lower. ( b̂ < β · br )
Switch is triggered from higher to lower video quality

if the weighted bit rate drops below β · br . If the available
bandwidth is less than the instantaneous bit rate of the video
stream, cumulativewebkitDecodedByteCount is reduced.
Case 2: Low quality to higher. ( b̂ > β · br )

The switch signal is sent if the weighted bit rate increases
above br /β , and when the cross traffic does not influence
the video quality. Hence, the ABW is more than the instan-
taneous bit rate of the application.

Algorithm 1 Bandwidth Adaptation Algorithm
Require: β (Sec. 4.4), τ (Sec. 4.4)

Main procedure.
1: repeat
2: every τ seconds:
3: Recompute br acc. to Eqn. (5)
4: Recompute b̂ acc. to. Eqn. (3)
5: Call Signalling of Bit Rate Switch (br , b̂, β) (Alg. 2)
6: until Service stopped
7: return

Algorithm 2 Signalling of Bit Rate Switch

Require: br , b̂, β
Decision making process to trigger a WebSocket signal.

1: if b̂ < β · br then
2: WebSocket Signal (0, b̂)

3: else if b̂ >
br
β

then

4: WebSocket Signal (1, b̂)
5: end if
6: return

4.5 Signalling via WebSockets
Changes in estimated b̂ from the case 1 or case 2 (Sec. 4.4) are
sent through theWebSocket channel, that listens for both the
mouse coordinates (Fig. 2). First of the two parameters is a
boolean flag (0 or 1) and the second one is b̂. The server logic
for adaption can be implemented based on either this flag or
b̂. The requested encoding rate is received by the application,
and the proposed b̂ can be used to notify the encoding bit
rate, until there is a further change in the network conditions.

Table 1: Notations.

b bit rate sample
br desired bit rate
b̂ estimated bit rate
f frame rate sample
fr desired frame rate
α balancing between current and past samples

during bit rate estimation
β threshold on bit rate gap used for signalling
η half-life of bit rate estimation
τ time interval for switching the sender’s bit rate

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  100  200  300  400  500  600

B
it

ra
te

 (
K

b
it

/s
)

Time (seconds)

current bitrate
weighted bitrate

Signal-1

Signal-2

ABW < Bitrate

Figure 3: Bandwidth adaptation algorithm reacts to
the fluctuations with signal-1 and signal-2.

With little overhead, server has the possibility to change the
bit rate of the encoder to b̂.

5 EXPERIMENTAL SETUP
We have conducted the experiments in our controlled re-
search networking testbed environment based on Emulab [16]
using a Dumbbell topology. The nodes representing servers,
routers and clients are dedicated physical machines that
are configured and connected using an Emulab configura-
tion script. The nodes are connected to a central physical
switch with 1 Gbps links. The switch creates virtual LANs
(VLANs) based on the topology and assigns the requested
bandwidth to the links. Network parameters like bandwidth,
delay, packet loss can be configured on a traffic shaping
delay node introduced between the bottleneck routers us-
ing the ipfw utility [18]. This creates a dynamic real-time
networking scenario for testing the prototype. Changing
the bottleneck link attributes between the routers influence
the end-to-end capacity of the link from video server to the
client. The cross traffic (CT) sender, receiver send and receive
User Datagram Protocol (UDP) CT with Iperf [14]. During
a particular flow, the instantaneous ABW is influenced by
the magnitude of CT that goes through the bottleneck link
between the routers.

6 RESULTS AND ANALYSIS
6.1 Video Analysis with BWA
For video quality anaylsis, we collected the HTML5 video sta-
tistics on the client. The application was run for 10 minutes
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and UDP traffic was sent during the entire run that saturates
the link to effect the ABW. The impact of network impair-
ments on the received video throughput is shown with the
help of mining the video specific attributes as described in
4.1 CT of 46 Mbps is sent over 50 Mbps capacity link for the
first and last 3 minutes, that has no influence on b̂, as the
ABW is larger than the bit rate of the application (1.5 Mbps).
CT between 180 to 420 sec. (Fig. 3) is increased to 49 Mbps,
changing the ABW to 1 Mbps. If the ABW is lower than the
b̂ required for the smooth playback of the video, the appli-
cation performance at the client is affected, and hence, the
number of decoded bytes is reduced. This effect is shown
in the Fig. 4. Thus, b̂ falls to a value less than the factor of
β and br , which is handled by case 1 in Sec. 4.4. The label
Signal-1 in Fig. 3 points to this case and a WebSocket signal
containing b̂ is sent with the flag 0, i.e., message (0, b̂). It is
also noticed that the b̂ smooths the effect of current bit rate
fluctuations and the smoothing factor depends on the half-
life η. After 420 sec., CT is reduced to 46 Mbps and the ABW
is larger than the application bit rate. The b̂ is increased by a
quotient of br by β . This triggers a switch in the bitrate and
the algorithm detects a change in the network conditions
and the ABW by sending Signal-2 ( Fig. 3) with the message
(1, b̂), where the server can adapt to the desired bitrate.

6.2 DASH Evaluation
The delays, overhead, and the delay-offset are shown in the
Tables 2 and 3 respectively. The average delay from ten runs
in table 2 is marginally larger than 1 sec. in the case of DASH
implementation as it takes at least 1 sec. to create the next
chunk with 1 sec. GOP and 30 fps. Hence, in the case of
smaller GoP, the IDL is nearly equal to the network delay,
i.e., delay betweenMP-E→MP-F. In case of NSS, the average
delay for the 10 runs is 113 msec. The overhead from Tab. 3
increases with the increasing GoP, due to the Shaka-Player
interaction and the frequency in sending the HTTP GET
requests of the respective chunk identifier (CI). Overhead
for 1000 video frames (33 chunks) has been measured with
30 fps. As the next requested chunks are already available
at the encoding server before the next GET request, GoP-8
has the minimum overhead, which is approximately equal

Table 2: Average initial delay between MP-C→MP-F.

Streaming Type Delay (s)
DASH 1.14926
NSS 0.113797

Table 3: Average overhead observed for 30 fps.

Group of Pictures Overhead(KByte) Delay offset (s)
Gop-8 13.58 7.83
Gop-16 19.01 2.34
GoP-30 26.38 1.14

to one GET request per chunk. Hence, there are no duplicate
or multiple GET requests for the same CI. For GoP-16, there
are some repeated GET requests observed for the same CI
during the beginning of the session, where the encoder is
slower in creating the chunks than the expected rate of GET
requests. In the last case of GoP-30, there are duplicate and
multiple GET requests for each CI, that causes additional
overhead from the client. This is due to the corresponding
chunks that are not available at the encoding server at the
time of HTTP GET requests. In a lossy network and vary-
ing RTT, the overhead can increase, however for real-time
interactive streaming application, a GoP of 1 sec. (30 fps) is
recommended.

Considering 1 sec. as the highest frequency Shaka-Player
can request the chunks from the encoding server, if the en-
coding software creates chunks smaller than 1 sec. GoP, the
trade-off in delay (Tab. 3) shows that GoP-8 has the largest
offset delay (OSD). As the Shaka-Player client is unable to
fetch the segments or send HTTP GET requests at a rate
approximately equal to 0.25 sec. A lag of 7.8 sec. is seen,
which implies that if the encoder creates 50 chunks from the
live stream, the client is downloading/requesting the chunk
identifier with OSD of 7.8 sec. OSD is reduced to 0.5 sec. in
GoP-16 due to the increase in the GoP.

7 CONCLUSIONS AND FUTUREWORK
Wepresented an adaptive streaming prototype for interactive
FVV application without using DASH segmentation method,
and introduced a client-side passive bandwidth estimation
technique with open source technologies like HTML5 and
WebSockets, which detects changes in the ABW. It is tested
on a real networking testbed with varying cross traffic. The
implications from current work can also be applied in one
of the emerging fields, such as video analytics. Examples
are provided in the work of [7] and [5], that addresses the
issue with network bandwidth for improving the scalability,
overhead associated with large video sets, the application of
lightweight video analytics using WebSockets for adaptive
streaming of 3D interactive video and camera arrays.
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