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Introduction
Deep learning (DL) methods have demonstrated their
effectiveness in spatial and immersive audio and are ex-
tensively utilized in various fields. One notable applica-
tion is sound source localization (SSL), also known as
direction of arrival (DOA) estimation, where DL models
can compete with or even surpass classical approaches,
especially in challenging acoustic conditions. However,
it has been shown that DL approaches primarily achieve
good and reliable results when the models are not used
as black boxes that process vast amounts of raw data and
autonomously learn implicit feature representations, but
when application, model, and input data are finely tuned
to each other.

DL based SSL can typically be divided into different
components. An overview of a general pipeline is shown
in Fig. 1. The following sections provide brief insights into
the different aspects, in particular those investigated by
the Institute of Communications Technology at Leibniz
University Hannover in recent years. In addition, the
current research project “Hooray” will be introduced in
the last section, in which the possibilities and performance
boundaries of deep learning based SSL using a head-
mounted microphone array are being investigated.

The description of the SSL components is explicitly fo-
cused on selected topics and does not claim to be exhaus-
tive. Further and more comprehensive information on DL
based SSL can be found in the systematic review in [1].

Input Feature Extraction
A key aspect in the design of DL based SSL is the choice of
input features. One approach involves using unprocessed
inputs, allowing the neural network to autonomously dis-
cover the most effective representations for the task, po-
tentially leading to innovative methods of interpreting
audio data for localization tasks. This strategy involves
feeding the network with multi-channel waveforms di-
rectly in the time domain, providing a raw, unfiltered
signal. Alternatively, in the time-frequency domain, de-
spite undergoing initial filter-bank processing, magnitude
and phase spectrograms could also be regarded as some
kind of unprocessed input feature.

However, applying task-specific preprocessing, which typ-
ically incorporates the principles of traditional SSL meth-
ods, often leads to improved convergence and performance.
For raw microphone signals, features such as the general-
ized cross correlation with phase transform (GCC-PHAT)
[2], spatial cue-augmented log-spectrogram (SALSA) [3],
or SALSA-lite [4] features are commonly extracted. When
dealing with binaural signals, attributes like the interaural

level difference (ILD), interaural time difference (ITD),
and interaural phase difference (IPD) are typically uti-
lized [5]. Similarly, for first-order Ambisonics signals, the
estimation of the (pseudo-) intensity vector has proven
highly effective and has therefore been established as a
common feature extraction method [6].

When extending to higher-order Ambisonics, there are
considerably fewer detailed studies and established stan-
dards are not as prevalent as in first-order scenarios. This
situation underscores the need for additional investigation
into how higher orders might enhance localization perfor-
mance and which specific features could be most effective
for this purpose. Initial investigations using amplitude
and phase spectrograms have indicated that higher-order
features generally allow for more accurate SSL, especially
in multi-speaker scenarios [7], [8]. When investigating
more sophisticated higher-order features, e. g. generaliza-
tions of the first-order intensity vector to higher orders,
preliminary results show considerable differences between
the results; however, the use of more sophisticated and
complex input features is sometimes associated with ad-
ditional challenges such as overfitting and thus reduced
generalizability. These results are undergoing more de-
tailed analysis and are being prepared for publication.

Input Feature Scaling
In general, the extracted features should not be used as
they are, but should be scaled, as this has been shown to
improve the performance and convergence of the models.
In this paper, a distinction is made between an individ-
ual normalization of the audio data (e. g. peak or rms
normalization) to remove unwanted and informative bias
and the dataset-wide scaling of the extracted features
(here in the time-frequency domain). While there are
various methods, the so-called standardization or z-score
normalization to zero mean and unit variance has proven
itself. With time-frequency data, there are generally three
degrees of freedom (time, frequency, channel) along which
scaling can be performed jointly or individually.

In a systematic investigation with amplitude and phase
channels as well as first-order intensity vectors, it has
been shown that, especially with magnitude and phase
spectrograms it is important to align the different scales
of magnitude and phase channels by an individual scaling
[9]. On the other hand, relative dependencies between
the different channels should be preserved by respective
common scaling. The performance differences when using
different scaling variants of the intensity vectors were
considerably smaller. Both the joint and the individual
scaling of real and imaginary parts achieved good results
[9].
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Figure 1: Basic DL pipeline for sound source source localization tasks.

Model and Problem Formulation
Model Architectures
This section provides a brief overview of established neural
network architectures and output formats for the task of
SSL. For a more comprehensive discussion on these archi-
tectures and their specific connections to SSL, please refer
to [1]. Additionally, fundamental concepts and principles
of deep learning are detailed in [10]–[12].

An established class of neural networks used in SSL are
convolutional recurrent neural networks (CRNN). As the
name suggests, these networks combine one or more convo-
lutional layers with one or more recurrent layers and thus
also provide the usually associated advantages of both
methods. Convolutional neural networks, which emerged
from the study of the brain’s visual cortex, have proven
to be very effective in local pattern recognition tasks,
while also being resource-efficient due to using partially
connected layers and weight sharing [11].

Recurrent neural networks work especially well on sequen-
tial data like audio signals [11] by processing sequences
of inputs one time step at a time while maintaining a
so-called state that reflects the accumulated information
from observed data, effectively capturing temporal depen-
dencies [12]. In practice, the advanced RNN variants long
short-term memory (LSTM) cell or the gated recurrent
unit (GRU) cell are usually deployed, which are designed
to overcome the limitations of traditional RNNs in han-
dling long-term sequences. In CRNN architectures, the
combined use of convolutional layers and recurrent layers
is followed by a final mapping of these integrated features
to outputs via a fully-connected layer.

The (self-) attention mechanism is another key element
that is increasingly used in SSL models, especially in
transformer architectures, where it serves as an alterna-
tive to traditional RNNs. This approach allows the neural
network to selectively focus on specific segments of the in-
put sequence, assigning weights to different input vectors
by evaluating the correlations between them [1].
Output Format
SSL tasks are typically categorized into classification and
regression approaches. In the classification paradigm, SSL

involves estimating whether each point on a predefined
spatial grid corresponds to the direction of an active
sound source or not. Therefore, the target of the model
is a multi-hot-encoded vector of the size of the grid for
each time frame, with each index corresponding to a
certain DOA. During inference, the largest values of this
vector corresponding to the respective DOAs need to be
chosen, though adjacent grid bins may be mistakenly
identified as different sources due to their high values.
To avoid such misclassifications, a so-called peak-picking
strategy is applied. There are different methods, e. g. a
spatial smoothing over neighboring directions [6] or a
minimum considered angular distance between different
sound sources [13].

On the other hand, the regression approach aims to di-
rectly predict the Cartesian coordinates of each sound
source’s DOA vector for each time frame, which requires
consideration of source permutations due to lack of direct
source assignment or varying prediction order. To im-
plement permutation-invariant training, minimum mean
squared error over all permutations is usually used as the
loss function. While each method has its own intricacies
– classification requires the definition of a spherical grid,
which introduces a trade-off between discretization error
and task complexity, and regression models typically re-
quire a priori information on the number of sound sources
– an appropriate choice of hyperparameters can lead to
comparable performance between the two [13]–[15].

An alternative method combines detection and localiza-
tion into an end-to-end task using the activity-coupled
Cartesian DOA (ACCDOA) formulation. This approach
associates sound event activity with the length of a corre-
sponding Cartesian DOA vector [16], i. e. inactive sound
sources are represented by null-vectors while the vectors
corresponding to active sound sources have unit norm.
During inference, a sound source is then said to be active,
if the activity exceeds a certain threshold, e. g. 0.5. This
ACCDOA approach outperformed two-branch architec-
tures in the SELD task of the DCASE 2020 challenge,
establishing itself as the new baseline method in the fol-
lowing editions [17].



Figure 2: The KEMAR HATS equipped with a Microsoft
HoloLens and the 16-channel MEMS microphone array exten-
sion.

The project Hooray
The research project Hooray – Exploring the Performance
Boundaries of a Head-Worn Microphone Array for Deep
Learning based Dynamic Acoustic Scene Analysis is about
the evaluation of a head-worn 2D microphone array for
DL based DOA estimation. Special focus is given to the
assessment of the influence of different parameters such
as a correct head-above torso orientation (HATO), the
number and positioning of the microphones or inclusion of
prior information. For example, first studies have shown
that head rotations have a positive effect on the local-
ization accuracy of DL models [18], [19]. However, only
binaural signals were used and no correct representation
of the HATO was taken into account.

For these investigations, two different designs of 16-
channel MEMS microphone arrays were developed as
extension kits for the Microsoft HoloLens mixed reality
headset. The basic setup of the project, which consists of
the microphone array and the HoloLens mounted on the
head of a KEMAR head and torso simulator (HATS), is
depicted in Fig. 2.

In order to be able to consider different types of head
movements or HATOs across various scenarios involving
multiple sound sources and distinct room acoustics while
ensuring high diversity and real-world representativeness
in the data, the training and test datasets were chosen
to be simulated and synthesized from measured anechoic
impulse responses.

For detailed and correct room simulations, full spheri-
cal impulse responses were needed for all HATOs. To
generate such datasets, motorization of the head rota-
tion was essential for both timing and precision reasons.
Therefore, a low-cost open-source head motorization kit
for the KEMAR HATS, called the LoCOMo kit was de-
veloped [20], [21]. The goal was to build a non-invasive
and easy to assemble as well as simple to use motoriza-
tion kit using off-the-shelf components. Therefore, the
design incorporates an external toothed belt drive and an
Arduino-controlled stepper motor, accompanied by 3D
printed parts, a basic electronic circuit, and a UDP-based

Figure 3: Impulse response measurement setup with the
loudspeaker positioned at 1m distance to the acoustic center
of the KEMAR head. The red dots indicate the measurement
directions; the grey dots at the bottom show source positions
below −72◦ elevation which could not be measured.

MATLAB interface for control.

Given the externally mounted construction of the Lo-
COMo kit, potential acoustic influence on measured
HRTFs was investigated in order to assess the suitabil-
ity of the kit for different conceivable applications. The
acoustic influence of the motorization on the measured
HRTFs was identified by a detailed quantitative compari-
son of broadband binaural cues and the fine spectral struc-
ture for five different elevations and at a 10◦-resolution
of azimuth and HATO. In general, it can be said that
the LoCOMo kit has minor acoustic influence, which is
mainly constrained to contralateral constellations. Based
on the rather small differences identified, especially to
the HRTFs of a KEMAR with equivalent neck extension,
the use of the motorization should be feasible for auto-
mated acquisition of HRTF datasets of high quality and
comparability.

Using the LoCOMo kit, nearly full-spherical datasets of
impulse responses with variable HATO from −90◦ to
90◦ were measured with both the built-in KEMAR micro-
phones and the head-worn microphone array. Fig. 3 shows
the measurement setup featuring the KEMAR equipped
with the LoCOMo kit and the loudspeaker positioned at
an elevation angle of 0◦.

Using these impulse response datasets, training and test-
ing datasets were simulated and synthesized incorporating
different room acoustics, speaker scenarios and head rota-
tions. The next steps involve the training of the models
on the different datasets, followed by a detailed evaluation
identifying the influence of all the parameters mentioned
above.

Besides common evaluation, benchmarking against state-
of-the-art systems and microphone (sub-) arrays and vali-
dating the generalizability with real recordings, the mod-
els will also be analyzed using interpretability techniques
like e. g. Layer-Wise Relevance Propagation (LRP) to
allow a more substantial statement on the models’ robust-
ness and decision making [22].
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