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Abstract
Direction of arrival estimation using deep learning is a
well-established research area, usually approached as a
regression or classification model. While classification
methods have been used preferentially for some time es-
pecially for multi-source localization, regression methods
have become increasingly popular due to their ability to
provide continuous direction estimation. However, multi-
source regression is a challenging problem as it requires
addressing the issue of permutation invariance. Regression
and classification approaches have already been compared
in detail for single-source localization. For multi-source lo-
calization, there are numerous proposed methods in both
categories, but, to the best of our knowledge, there is no
systematic comparison between the two options. This
study aims to fill this gap by providing a comprehensive
analysis of regression and classification models, especially
in multi-source localization scenarios.

Introduction
Deep learning based direction of arrival (DOA) estima-
tion has been studied extensively both as regression and
classification problem with each approach having its own
challenges and advantages. For one-source scenarios, the
two methods have already been compared in detail [1], [2],
with regression seeming to be more accurate in scenarios
with diffuse interference, while classification appeares to
be more robust in the presence of localized interference.

When comparing both approaches in a multi-source sce-
nario, it is important to take into account that each
method involves its own peculiarities. Classification mod-
els usually require a spherical grid definition, which in-
troduces discretization errors and often involves post-
processing techniques such as peak-picking to identify
unique sound sources in the prediction. In contrast, re-
gression models need to address the permutation invari-
ance problem, since there is no direct assignment to a
specific sound source or the predicted order may vary.

In addition, the number of sound sources is often (as in
this study) assumed to be prior knowledge. However,
a generalization to an arbitrary number can be done in
different ways. A straightforward approach (independent
of regression or classification) is to preestimate the num-
ber of sound sources. In the case of classification, the
generalization can also be achieved naturally, e. g., by
introducing a threshold value in the classification. There
are also approaches for regression, such as the activity-
coupled DOA (ACCDOA) estimation [3], which joins
localization and detection information by scaling a DOA
vector by its probability of belonging to an active source.

However, the detection of a sound source should not be
part of these investigations. Furthermore, the focus is
only on the localization of static sound sources and not
on the tracking of moving sources such that challenges
like identity switches can be neglected [4]. Therefore, a
frame-wise permutation invariant training (fPIT) strategy
is used in contrast to utterance-level PIT (uPIT) [5] or
sliding PIT (sPIT) [4].

Even though multi-source sound source localization has
already been investigated both as classification and re-
gression task, there is a lack of explicit comparison of the
two approaches with specific investigation of the different
parameters such as the spherical grid or the peak-picking
strategy. To address this gap, this work utilizes synthe-
sized first-order Ambisonics speech signals as well as a
convolutional recurrent neural network (CRNN) as basic
architecture of the deep learning model [6], [7], which will
be explained in more detail in the next section.

Model
The deep learning models used in this investigation follow
the same basic structure as in [6]–[8]. A detailed overview
of the network’s architecture is given in Fig. 1. The sole
differences between the regression and the classification
models appear in the final layer, i. e. the number of
output units dimout, the output activation actout as well
as the loss function. Details on these parameters will be
provided in the next paragraphs.

As evaluation metric we define the localization error as
the time average of the frame-wise angular distances be-
tween label and prediction. When calculating the angular
distance, the permutation of the predicted sound sources
resulting in the minimum angular distance is chosen.

All the models were implemented using the TensorFlow
framework and optimized using the Nadam optimizer
while incorporating early stopping on the validation set.

Classification
In the classification approach, the DOA estimation is
interpreted as the task of estimating whether or not each
point on a predefined grid corresponds to the direction
of an active sound source or not. Here, the following
quasi-uniform grid on the unit 2-sphere is used:

θi = −90 +
i

I
· 180 ,with i ∈ {0, . . . , I},

ϕi
j = −180 +

j

J i + 1
· 360 ,with j ∈ {0, . . . , J i},

(1)

with I = ⌊ 180
α ⌋, J i = ⌊ 360

α cos(θi)⌋, and a grid reso-
lution parameter α which results in a grid of ngrid =
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Figure 1: CRNN architecture for DOA estimation used for the regression and classification models.
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points. The angle ϕ is the azimuth, which

is zero at the frontal direction and increasing counterclock-
wise; θ is the elevation, which is zero at the horizontal
plane and positive above. In this paper, five different
grids as listed in Tab. 1 are compared.

According to this classification setting, the target of the
CRNNs is a multi-hot-encoded vector of size dimout =
ngrid for each time frame, with each index corresponding
to a DOA according (1). From this vector, the nsources

largest values that correspond to the respective DOAs are
chosen. When doing so, it may happen that neighboring
grid bins are assigned high values during prediction and
therefore picked as different sound sources, while actually
belonging to the same sound source. In order to avoid this
kind of misclassification, a so-called peak-picking strategy
is applied. There are different methods, e. g. a spatial
smoothing over neighboring directions [8]. In this study, a
sound source is only assigned to a grid bin if this bin has
a minimum angular distance of mindist = 0◦, 5◦, 10◦, 15◦

to all previously assigned sound sources.

The final activation function actout are a softmax and
a sigmoid activation for the one- and multi-source clas-
sification case, together with a categorical and binary
cross-entropy loss function, respectively.

Table 1: Approximated maximum possible discretization
error induced by the different spherical grids.

Name α ngrid Discretization error in ◦

grid1669 5 1669 3.5
grid749 7.5 749 5.7
grid425 10 425 7.0
grid345 11 345 7.8
grid263 12.5 263 8.9

Regression
In the regression approach, the Cartesian coordinates of
the DOA vector of every sound source are directly es-

timated by the model for each time frame, resulting in
an output dimension dimout = 3 · nsources. As mentioned
above, permutations of the sound sources have to be con-
sidered. Therefore, the minimum mean squared error
(MSE) over all sound source permutations is applied as
loss function implementing a fPIT strategy. The final ac-
tivation function actout of the model is a linear activation
followed by a normalization to unit-norm.

Data
The procedure for generating the training, validation, and
testing data is described below. For further details the
reader is referred to [6]. The data used for this study
was generated from a set of SRIRs simulated with the
MCRoomSim toolbox [9] as spherical harmonics signals.
The acoustic properties of the walls were set to plausible,
randomly chosen surfaces of the GRAP database [10].
For the multi-source case, additional SRIRs were selected
belonging to the same room but to a different source and
having an angular distance of at least 15◦ from each other.
These SRIRs were then each convolved with a different
speech sample from the TIMIT database. The spherical
harmonics speech signals were added at a random signal-
to-interference-ratio (SIR) between 0 and 10 dB relative
to the first source. The signals were cut to the minimum
length of the respective individual speech signals, such
that the respective target number of sound sources is
active during the entire length of the signal.

In the single-source case, ambient babble noise was added
to the speech signal at a signal-to-noise ratio (SNR) be-
tween 0 and 20 dB, whereas in the multi-source case,
ambient babble noise was added to the speech signals at
a constant SNR of 20 dB. Finally, these sentences were
cut to one-second-sequences and resampled to 16 kHz.

For further evaluations of the DOA estimation perfor-
mance in a more realistic scenario, additional testing data
based on SRIRs measured in the Immersive Media Lab
[11] of our institute was synthesized according to the pro-



cedure mentioned above. In the following section, both
results on data synthesized from simulated and measured
SRIRs are reported.

As input feature for our models, first-order Ambisonics
(FOA) pseudointensity spectrograms [6]–[8] were used.
In the implementation, a short-time Fourier transform
(STFT) is performed on 640 samples using a Hann window
along with zero-padding to the FFT size of 1024 samples
and a hop size of 320 samples, resulting in 50 time frames
and 513 frequency bins.

Results
The localization performance of the regression and classi-
fication models for the different numbers of sound sources
are shown in Fig. 2. In the single-source case, the regres-
sion model slightly outperforms all classification models
with a median localization error of 2.3◦ and 4.5◦ for the
simulated and measured data, respectively, which is con-
sistent with the results in [1], [2]. For the classification
models, a finer grid resolution always improves the lo-
calization result which is likely due to the discretization
errors associated with the different grids.

In the multi-source case, the regression model and the
best classification model achieve comparable results for all
numbers of sound sources as well as for both simulated and
measured data, with the classification being slightly more
accurate. However, this is mainly the case if the prior
knowledge that all sound sources have a minimum distance
of 15◦ is fully used for identifying unique sound sources.
If the minimum distance between the predicted sources
is reduced, the misclassifications increase considerably,
especially for the grids with a finer resolution. This
pattern is mainly expressed in an increased variance of
the localization error and less in the median error.

For two or three sources, the comparatively fine grids
grid749 and grid1669 achieve the best results with a median
localization error of about 5.9◦ and 7.3◦ on the measured
data, respectively. For four or five sources, the coarser
grid grid425 always achieves the best results with a median
localization error of 8.4◦ as well as 9.7◦.

Conclusion
All in all, the classification approaches achieved very ac-
curate localization results when prior information about
the distribution of the sound sources was used during
the identification of unique sound sources during postpro-
cessing. If less prior information is available or can be
assumed, more sophisticated peak-picking strategies may
have to be considered or a coarser grid resolution has to
be chosen (which implicitly corresponds to peak-picking).
In general, the more sources there are, the coarser the
grid should be chosen. The spherical grid with 425 direc-
tional bins has turned out to be a good compromise for
the classification models for all numbers of sound sources.
Regression approaches provide almost equivalent perfor-
mances compared to the best classification approaches
while containing fewer adjustable hyperparameters.
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Figure 2: Box plots of the localization errors for the regression and classification models on different grids and with
different minimum distances between predicted sound sources for one to five sources. The boxes are drawn from the
first to the third quartile and the horizontal line depcits the median. The dark and light boxes represent the results on
the data synthesized from simulated and measured SRIRs, respectively. Please also note the different scalings of the
vertical axes.


