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Introduction

Machine learning (ML) models, especially deep neural
networks (DNNs), excel at particular tasks in signal de-
tection and parameter estimation under conditions that
cause traditional algorithms to struggle. For instance,
convolutional recurrent neural networks (CRNNs) can
surpass manually designed algorithms in performance for
direction of arrival (DOA) estimation of sound sources
among noise and reverberation [1]. Due to a DNN
model’s high complexity, the high-level problem solving
strategy embodied by a trained network is obscure, how-
ever — the model is a black bozx [2], which is generally
problematic. It is not clear, for example, whether a model
has learned a valid strategy for tackling the task at hand
or if its results may be based on training data artifacts
altogether [3, 4].

The field of explainable artificial intelligence (XAI) is
concerned with means to gain insight into such black
box models. This work is concerned with applying the
Layerwise Relevance Propagation (LRP) method [5] —
typically used with image processing models — to sound
source DOA estimation CRNNs [6, 7] in order to explore
the specifics of interpreting the method’s results in the
context of audio applications.

Explaining Neural Network Predictions
LRP is an XAI technique that aims to attribute the out-
put produced by a model for a particular input example
to the individual input features in terms of how much
each feature contributes to the result. For a DNN this
is achieved by re-tracing signal propagation through the
model in reverse direction. Starting at the output layer, a
conservative quantity termed relevance is propagated to
the next lower layer according to one of several relevance
redistribution rules. The method’s result is obtained by
repeating the procedure layer by layer until the input
layer is reached.

For a fully connected (or convolutional) DNN layer which
implements a mapping from nodes z; () in layer [ to nodes
x;0+1) of the next layer I + 1 according to
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with weights w;;, biases b; and a nonlinear activation
function ¢, the basic relevance redistribution rule known
as LRP-z [2, 5] is given by
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Figure 1: Illustration of LRP relevance redistribution for a
fully connected neural network layer.

where the notation R{z} indicates relevance assigned
to variable x. LRP thus redistributes each upper layer
node’s relevance R {a:j(”l)} to the lower layer nodes ;")
according to their contributions ;) - wj; in relation to
the total value of ;) prior to the activation function.
This principle is illustrated by Fig. 1.

Modifications of LRP including numerical stabilization
(LRP-¢) or improved suitability for convolutional layers
(LRP-af) exist [2, 5], with best practices regarding the
selection of rules and hyperparameters having been sur-
veyed [8]. LRP has also been modified for recurrent struc-
tures such as Long Short Term Memory (LSTM) [9].

While the typical domain of LRP is image processing, the
method has been applied to neural networks for audio
analysis including estimation of sound source DOA [1] or
elevation [10] as well as speech classification [11].

Interpreting Relevance Heatmaps

The models examined in this work are CRNNs for DOA
estimation of one-second segments of speech signals [12]
sampled at 16kHz and convolved with simulated [13]
Higher Order Ambisonics (HOA) [14] room impulse re-
sponses and with added diffuse babble noise (created by
averaging speech signals).

Fig.2(a) depicts the magnitude spectrogram of an ex-
ample input signal, with relevance values for each time-
frequency bin (sum of magnitude and phase channel rel-
evance) obtained from an analysis of a second order Am-
bisonics model being displayed as a heatmap in Fig. 2(b).
When LRP is applied to audio processing DNNs, which
oftentimes use some form of spectrograms as their inputs,
the results are typically displayed graphically and inter-
preted through visual inspection of the time-frequency
domain data [1, 11]. While this is a valid approach,
one must keep in mind that spectrograms are fundamen-
tally distinct from images in several ways. On the one
hand, audio signals are inherently additive, which im-



plicates that each time-frequency bin in a spectrogram
does not unambiguously belong to one of the signal com-
ponents present in a scene. This behavior is unlike im-
ages, where each pixel is generally occupied by a single
object only [18]. Moreover, spectrograms differ from im-
ages with respect to the meaning that channels carry. In
images, channels are used to represent color, whereas a
multichannel spectrogram may bear a variety of mean-
ings based on the specific configuration — such as HOA
signals or intensity vector components.

These specifics complicate the process of gaining knowl-
edge from LRP analysis in audio applications. The main
contribution of this work lies in the proposition of an ap-
proach based on further analysis of the results produced
by LRP enabling observations beyond simple visual com-
parison of input data and relevance heatmaps.

Experimental Setup

Training and test data generation for the experiments
in this work adheres to the procedures established by
Poschadel et al. [6, 7]. The model architecture, which is
summarized in Tab. 1, is identical to that presented by
Poschadel et al. [6, 7] except for the models performing
single-source DOA classification, thus using a softmax
output activation and assigning scores to 425 direction
classes. Among the analyzed models, four models use
HOA signals of up to fourth order whose Short Time
Fourier Transforms (STFTs) serve as model inputs. Mag-
nitude and phase of the complex-valued spectrograms are
treated as individual channels. Results presented here
are for a second order Ambisonics model operating on
normalized input data (normalization of magnitude and
phase channels through subtraction of the mean and di-
vision by the standard deviation of training set magni-
tude and phase data, respectively). Another model uses
spectrograms of the x, y and z components of the active
and reactive intensity vectors computed from first order
Ambisonics signals [1, 6].

A custom LRP framework for use with the TensorFlow 2
Python library [15] has been created, inspired by and
partly based on existing implementations [9, 16, 17].
LRP-af with a = 1, § = 0 has been used for the con-
volutional layers, LRP-e¢ with € = 0.01 has been used for
fully connected layers. The existing variant of LRP for
LSTM [9] is designed for LSTM layers which pass only
their block outputs at the final time step to the follow-
ing neural network layer. Since the bidirectional LSTM
(BiLSTM) layers in the models examined here yield their
block outputs at each time step, the LRP algorithm for
LSTM has been modified to also inject relevance from the
next upper layer at each time step during the LRP back-
ward pass. For the LSTM layers, e = 0.01 has been used.
Relevance attributed to biases in the fully connected and
BiLLSTM layers has been redistributed among lower layer
nodes in order to ensure relevance conservation from layer
to layer [2].

Channel Relevance

The intensity-based CRNN shall serve as subject for
demonstrating an evaluation of channel relevance. With
the intensity vector being clearly related to sound source

Table 1: Architecture of the examined CRNN models. Ni, is
the number of input channels (twice the number of Ambison-
ics channels for HOA models, six channels for the intensity-
based model), Ngi;. = 64 is the number of filters in convo-
lutional layers, Npiock = 50 is the number of LSTM blocks,
Npin = 425 is the number of DOA classification bins. ELU is
the exponential linear unit activation function.

Layers Output dim.
Normalization (HOA only) 50 x 512 X Nin
Conv. — Batch norm. — ELU | 50 x 512 x Ngy.
Max. pooling 50 x 64 X N,
Conv. — Batch norm. — ELU | 50 x 64 x Ngy.
Max. pooling 50 X 8 X Nais.
Conv. — Batch norm. — ELU 50 X 8 X Nait.
Max. pooling 50 X 2 X Ngs.
Reshape 50 X 2 - Ngi.
BiLSTM 50 x 2 - Nblock
BiLSTM 50 X 2+ Nplock
Fully conn. — ELU 50 X 2 - Nplock
Fully conn. — softmax 50 X 2+ Npin
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Figure 2: Magnitude spectrograms and relevance heatmap
for one input example for a second order Ambisonics DOA
estimation CRNN, all figures for Ambisonics channel 0. For
visual clarity, spectrograms are displayed in logarithmic scale
w.r.t. their peak value (dBp), but the magnitude spectro-
gram input to the CRNN is linear.
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Figure 3: Channel relevance analysis for an intensity-based
DOA estimation CRNN on a set of 1000 examples with DOA
d corresponding to the direction bins containing the basis vec-
tors +é,+€,. Bars represent the mean, dots and whiskers
the median and 5 %, 95 % percentiles of absolute channel rel-
evance (summed over time and frequency) within each group
of examples.

DOA, this model lends itself to an analysis of how DOA
is reflected in the distribution of LRP relevance across
input channels. To this end, a set of 1000 test examples,
each featuring one of the four DOAs corresponding to
the direction bins that include the orthogonal unit vec-
tors %€, £€,, has been created. After LRP analysis,
relevance has been summed across time and frequency
for each channel. As highlighted by Fig.3, the input
channel corresponding to the respective example DOA
receives a greater share of relevance than the other com-
ponents among both active and reactive intensity chan-
nels. Channels not corresponding to the example DOA
receive a considerable amount of relevance nonetheless,
suggesting that the model is performing a comparison
of signals across channels in order to arrive at its DOA
estimate.

What is more, Fig. 3 shows that the entirety of active in-
tensity channels receives a greater share of total relevance
than reactive intensity. This effect has been further inves-
tigated using a technique known as pizel flipping [5, 19]
— time-frequency bins have been sorted by the relevance
attributed to them and successively set to zero while ob-
serving the score that the DNN assigns to the true DOA
class for the perturbed input. Fig.4 compares the re-
sults of such experiments using a subset of 2583 exam-
ples from the original test set with random DOAs where
perturbations have been introduced to all input channels
or to active and reactive intensity channels only, respec-
tively. These experiments permit to conclude that active
intensity serves as a primary source of information to the
DNN while reactive intensity provides additional cues —
the model is somewhat able to cope with minor pertur-
bations in the reactive intensity channels, but perturbing
active intensity causes as sharp a drop in true class score
as perturbing all channels, indicating that intact reactive
intensity information alone is insufficient for the model’s
operation. This is consistent with the physical interpreta-
tion of active intensity representing net energy transport
in the sound field and reactive intensity corresponding to
zero-mean energy fluctuations [20].
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Figure 4: Pixel flipping experiment for an intensity-based
DOA estimation CRNN, curves averaged over a set of 2583
examples with random DOAs. Perturbation has been applied
by setting time-frequency bins to zero either in all input chan-
nels in parallel or in active resp. reactive intensity channels
only.

Auralization of Relevance

Due to the additivity of audio signals, interpreting LRP
relevance heatmaps such as the one displayed in Fig. 2(b)
in terms of sound events can be difficult. As an intuitive
approach to this problem, a filtering method that ex-
tracts relevant sound features has been developed. When
aiming to create a listenable representation of LRP rel-
evance, simply computing the inverse STFT of spectro-
grams weighted by relevance is likely to produce sound
artifacts. The developed filtering scheme is essentially a
more well-behaved variant of this operation. It is based
on frame-wise convolution with impulse responses, ex-
tracting relevant audio a;re1(m) from the input signal
signal a;(m) according to
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where w(m) and Myep are the STFT window function
and hop size (stride) and g; ,,(m) is an impulse response
for filtering channel ¢ in time frame n. The filters
Gin(M), gint1(m), ... are constructed for each frame
n from the respective column in the heatmap H;(n, k),
where H; can be either the magnitude or the phase rel-
evance heatmap (or the sum of both) for the single Am-
bisonics channel ¢, for instance. In order to define the
gi.n(m), a perfect reconstruction B-band filter bank com-
posed of linear phase FIR filters v,(m) with b=1,..., B
is used. With Ky being the number of frequency bins
in H;(n,k) and T'y(k) being the DFT of 4,(m), the filter
gin(m) is defined as

B Ky
gim(m) =Y ( T (k)] 'Hi(n,k)> “w(m).  (4)

b=1 \k=

Fig. 2(d) shows a spectrogram of the reverberated and
noisy input signal of Fig. 2(a) filtered using the heatmap
of Fig.2(b) and a filter bank with B = 20 bands em-
ploying 129-tap filters with equidistant cutoff frequen-
cies designed using the window method. For comparison,
Fig. 2(c) shows the noise-free direct sound component of
the input signal. It becomes apparent that the DNN at-
tempts to ignore time-frequency regions mostly occupied



by noise and diffuse reverberation, instead focusing on
regions where the direct sound speech signal is promi-
nent. This is a non-trivial finding since it demonstrates
that the analyzed model has learned implicitly to detect
human speech based on just the (noisy and reverberated)
training examples and corresponding DOA labels. Also,
this finding confirms that the model has indeed learned a
plausible estimation strategy with respect to the problem
that it needs to solve.

Conclusion

XATI techniques aim to provide explanations to the results
of ML algorithms such as DNNs, providing knowledge on
a model’s otherwise hidden decision strategy as well an
additional metric — plausibility of the learned strategy —
in addition to pure prediction accuracy. In this work,
the LRP technique has been applied to CRNN models
for sound source DOA estimation and results have been
interpreted by leveraging the multichannel nature of the
input signals as well as subjecting those signals to a filter-
ing technique in order to extract relevant sound events.
Specifically in the context of audio, these additional tech-
niques are proposed as extensions to the LRP technique
for further analysis of the attribution results produced
by the method. More generally, this work highlights that
further insight on the strategy implemented by a DNN
model can be gained if results produced by LRP and
other XAI methods are viewed in the light of higher-
level concepts pertaining to the task at hand than the
raw input features used by the model.
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